

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 1

Research and Innovation Action (RIA) H2020 – 957017

 Stream Learning for Multilingual Knowledge Transfer
https://selma-project.eu/

D4.3 Intermediate platform with continuous massive stream learning

NLP capabilities

Work Package 4

Responsible Partner IMCS

Author(s) Guntis Barzdins, Sebastião Miranda, Didzis Gosko

Contributors Afonso Mendes, Arturs Znotins, Mikus Grasmanis,

Paulis Barzdins, Roberts Dargis, Normunds Gruzitis

Reviewer Yannick Esteve

Version 1.0

Contractual Date 31 December 2022

Delivery Date 22 December 2022

 Dissemination Level

Public

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 2

Version History

Version Date Description

0.1 30/10/2022 Initial Table of Contents (ToC)

0.2 18/11/2022 Section on DockerSpaces drafted

0.3 20/11/2022 Overall deliverable structure drafted

0.4 23/11/2022 Section on integration with Monito and Plain X added

0.5 08/12/2022 Ready for internal review

0.6 21/12/2022 Internal review feedback received, final updates

1.0 22/12/2022 Publishable version

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 3

Executive Summary

The Intermediate platform release with continuous massive stream learning capabilities covers

two main Use Cases UC1, UC2 of the SELMA project, along with internal testing Use Case

UC0. Focus is on the common Maestro Orchestrator streaming NLP backend enhanced by the

DockerSpaces technology recently developed within the SELMA project. The novel

DockerSpaces technology enables massive scaling of above mentioned two demonstrators with

vastly different frontend GUIs and NLP pipelines tailored to the specific Use Cases.

This document provides an overview of the intermediate SELMA platform release to be

followed by the final release later in the project. The document also discusses the “continuous”

aspect of long-term software support in SELMA project with the focus on DockerSpaces as a

potential solution.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 4

Table of Contents

Executive Summary .. 3

1. Introduction .. 6

2. DockerSpaces approach to continuous massive stream processing 7

2.1 Starting and using DockerSpaces .. 9

2.2 Internal architecture of DockerSpaces .. 11

2.3 Integration of Docker Spaces in Monitio and Plain X .. 15

3. Continuous software support in SELMA .. 16

4. Conclusion .. 17

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 5

Table of Figures

FIGURE 1 SELMA PLATFORM ARCHITECTURE: CONTINUOUS MASSIVE STREAM PROCESSING VIA

DOCKERSPACES LOAD-BALANCER OR VIA EXTERNAL CLOUD SERVICES .. 6

FIGURE 2 A SIMPLIFIED DIAGRAM OF SELMA DOCKERSPACES “ZERO MANAGEMENT” PRINCIPLE 7

FIGURE 3 EXAMPLE OF A PERSISTENT PINITREE SERVER RUN INSIDE THE DOCKERSPACES MAIN CONTAINER

 ... 9

FIGURE 4 EXAMPLE OF TEXT TO SPEECH SERVICE LAUNCHED VIA SELMA DOCKERSPACES 10

FIGURE 5 DOCKERSPACES BROKER MODULE IMPLEMENTS THE TOKENQUEUE ALGORITHM 12

FIGURE 6 DOCKERSPACES BROKER MODULE STATE DIAGRAM .. 13

FIGURE 7 DOCKERSPACES COMMAND-LINE PARAMETERS ... 14

FIGURE 8 HOW DOCKERSPACES INTEGRATES WITH PLAIN X AND MONITIO ... 15

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 6

1. Introduction

Continuous massive stream processing (including continuous massive stream learning

described in the deliverables D2.1, D2.2, D2.4, and D2.5) in SELMA platform is enabled via

SELMA DockerSpaces technology or via external commercial services like IBM Watson, MS

Azure, AWS, etc. as shown in Figure 1.

Figure 1 SELMA Platform architecture: continuous massive stream processing via

DockerSpaces load-balancer or via external cloud services

DockerSpaces approach enhances the existing SELMA platform as described in the previous

deliverables D4.1 and D4.2 with the highly scalable yet simple continuous massive stream

processing capability. This new capability is essential for delivering continuous massive stream

learning technologies developed in WP2 and WP3 to the media monitoring Use Case 1

(Monitio), media production Use Case 2 (Plain X), and other use cases (such as Use Case 0 for

testing and configuration, Podcast creation of Use Case 2, external LETA Use Case) described

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 7

in deliverables D1.2 and D1.3. DockerSpaces will be released as open-source software with

potential applications also outside SELMA project.

2. DockerSpaces approach to continuous massive

stream processing

DockerSpaces is an original compute-cluster load-balancing technology developed within the

SELMA project and improves upon the original TokenQueue technology “side-car”

implementation introduced in the earlier SELMA deliverables D4.1 and D4.2. DockerSpaces

was developed in the IMCS Docker development lab to provide support for both x86 and ARM

architectures along with GPU acceleration. SELMA DockerSpaces1 is an alternative to the

popular cloud infrastructure scaling and management platforms such as Kubernetes, NGINX,

Docker-Swarm, HashiCorp Vagrant, etc. The key innovation of DockerSpaces compared to the

above-mentioned platforms is “zero management” – as shown in Figure 2, DockerSpaces is a

state-less service launched on top of standard Docker installation (on a single server or in a

cluster of servers), to which all state-configuration parameters are passed along with every

incoming REST API call as part of the URL path.

Figure 2 A simplified diagram of SELMA DockerSpaces “zero management” principle

1 SELMA DockerSpaces will be open-sourced at https://github.com/SELMA-project/docker-spaces

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 8

The “zero management” implies not only simplicity but also universality of the DockerSpaces

approach. A DockerSpaces compute-cluster is not only completely agnostic to the kinds of jobs

to be executed (any DockerHub container can be executed via REST API call), but services

also scale automatically with the influx of the various kinds of REST API calls.

The state-less architecture allows DockerSpaces replication for extreme scalability via round-

robin Domain Name System (DNS) configuration – a globally distributed farm of

DockerSpaces installations on different IP addresses can reside under the same DNS name used

by the incoming REST APIs, thus enabling virtually unlimited scalability in default round-robin

or more intelligent Akamai-DNS approach. DockerSpaces scalability is further enhanced by

the support of “serverless” frontend NLP pipelines – it means that all logic of an NLP

application can reside inside the web page JavaScript loaded in the users' web browser –

JavaScript from the web page then directly calls REST API services in the DockerSpaces

compute-cloud thanks to the Cross-Origin Resource Sharing (CORS) support in DockerSpaces.

Besides simplicity, this enables easy NLP application scaling by foregoing the need for

developing and running a (potentially bottlenecking) custom backend services. SELMA

Testing and Configuration UseCase0 (UC0) at https://selma-project.github.io serves as a demo

of such massively scalable frontend NLP pipeline.

It should be noted that DockerSpaces is well suited for massive scaling of simple pipelines

(such as NLP processing pipelines) but is not a complete replacement of NGINX, Kubernetes

or Docker-Swarm. The main limitation of DockerSpaces is support for execution of only

isolated non-persistent Docker containers, rather than internally networked Kubernetes-pods or

Docker-Compose applications with potentially persistent data storage. This intentional

limitation is the key enabler for the DockerSpaces unparalleled simplicity and efficiency.

Another limitation of DockerSpaces is the lack of built-in authentication, accounting, and web

server functionality – they are omitted for the state-less simplicity and efficiency reasons.

Both mentioned limitations of DockerSpaces can be partially mitigated. The applications

requiring persistence can be included as separate processes2 in the DockerSpaces container

2 optionally, persistent processes can be scaled with xinetd deamon

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 9

itself (see Figure 3), which by default is run in the persistent mode with the “--restart=always”

option as illustrated in Section 2.1. Meanwhile authentication, accounting, and web server

functionality can be added through pairing DockerSpaces with a state-full server (run as a

separate process inside the persistent DockerSpaces container) such as PiniTree server

(described in D2.2) illustrated in Figure 3.

Figure 3 Example of a persistent PiniTree server run inside the DockerSpaces main container

Why DockerSpaces was needed? Because in SELMA project we deal with hundreds of Docker

containers each the size of 2-10GB RAM footprint. Legacy solutions would keep them all active

in RAM, thus consuming vast resources. DockerSpaces allows to dynamically start/stop these

containers upon demand; moreover, DockerSpaces can start several copies of the same

container if the demand is high, thus scaling seamlessly both downwards and upwards. In this

way even a small computer can serve hundreds of Docker images, if they are not used

simultaneously (thanks to the TokenQueue queueing implemented inside DockerSpaces), or a

large compute cluster can dynamically scale number and type of workers according to the

demand. DockerSpaces precisely fulfil the SELMA platform requirements as described in D1.1

and D1.3.

2.1 Starting and using DockerSpaces

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 10

Setting up DockerSpaces on any Linux server, where Docker is already installed, is as easy as

executing a single command (no installation required):

docker run -p 9100:8888 -d -v /var/run/docker.sock:/var/run/docker.sock

--restart=always selmaproject/spaces:latest

With DockerSpaces running, one can launch and use any public Docker container from the

DockerHub (e.g.: https://hub.docker.com/repository/docker/selmaproject/tts) by merely

visiting the following URL from the browser (or constructing an appropriate REST API call):

http://ents.pinitree.com:9100/x:selmaproject:tts:777:5002/

This would launch a SELMA Brazilian Portuguese Text to Speech (TTS) container from the

DockerHub as shown in Figure 3.

Figure 4 Example of Text to Speech service launched via SELMA DockerSpaces

During the first call to DockerSpaces one has to be patient – the specified container is pulled

on-the-fly from DockerHub and cached locally for the future use; download may take about 5

minutes for a large 6GByte TTS neural-network container illustrated here, before the response

will appear in the web browser.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 11

The field “/x:selmaproject:tts:777:5002/” in the URL path passed to DockerSpaces is stripped

before handing the URL path to the actual Docker container; this filed is only used by the

DockerSpaces to acquire a temporary state-configuration for this HTTP request (x=single

thread container3 : selmaproject = DockerHub organisation : tts = repository : 777 = tag : 5002

= active port of the container). DockerSpaces ability to scale single thread containers via “x”

mode effectively provides the “massive” aspect to the SELMA platform.

2.2 Internal architecture of DockerSpaces

DockerSpaces is an open-source software and full details can be obtained by visiting the

DockerSpaces GitHub repository https://github.com/SELMA-project/docker-spaces and

documentation there.

Here we outline only the core design ideas behind the DockerSpaces, which are implemented

in the Go language and released as a single universal binary file (no installation scripts

required).

From the user point of view DockerSpaces is a primitive reverse-proxy similar to the popular

NGINX reverse-proxy – it accepts TCP connections on the specified IP address and port and

interprets them via HTTP or HTTPS protocol to further connect to the Docker containers

launched on-demand depending on the configuration parameters extracted from the GET or

PUT request path as was illustrated in the Figure 3. The tricky part starts when there are more

and varied incoming HTTP requests than there are CPU and RAM resources in the underlying

server – in this case requests have to be queued and load-balancing has to be enacted to launch

the optimal number of Docker containers for each job-type and to orderly route queued HTTP

requests to these containers evenly.

3 Most WP2 and WP3 developed neural NLP containers are SingleThreadContainers – with “x” mode

DockerSpaces allow to forego smart batching or internal queueing in NLP containers; DockerSpaces “y” mode

supports also multithread containers

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 12

To handle the queues and load-balancing, at the heart of DockerSpaces is the Broker module,

which implements the critical TokenQueue algorithm initially described in the SELMA

deliverable D4.1. The DockerSpaces Broker module in action is shown in Figure 5.

Figure 5 DockerSpaces Broker module implements the TokenQueue algorithm

The Broker module consists of the SourceSlots (incoming TCP/HTTP sessions) and

TargetSlots (currently running Docker containers), see Figure 6. Both SourceSlots and

TargetSlots have a field named “SlotType”, which needs to match for the TargetSlot to be able

to serve the SorceSlot.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 13

Figure 6 DockerSpaces Broker module state diagram

SourceSlots are activated by the standard TokenQueue protocol message-passing sequence

“Acquire”, “Acquired”, “Release” causing the assigned SourceSlot to switch between the states

“Free”, “Wait”, “Run”, “Free”.

TargetSlots have two switching sequences.

1. “Free”, “Run”, “Free” sequence is triggered by the SourceSlot in the “Wait” state, if it

finds a “Free” TargetSlot with the matching “SlotType”; this is the most common

sequence where the incoming HTTP request is served by an already started Docker

container. Once the HTTP request is served, “Release” message returns both SourceSlot

and TargetSlot into the “Free” state.

2. “Free”, “Starting”, “Free” sequence is triggered by the Broker internally to handle load-

balancing through changing the “SlotType” of the TargetSlot; this is achieved by killing

the previous Docker container and starting a new Docker container on the host/port

specified in “RefInfo”. The DockerSpaces Docker-protocol driver communicates with

the TargetSlot via message sequence “Start”, “Started” or “Start”, “Error” depending

on drivers' ability to pull from DockerHub a docker container specified in the

“SlotType” field – “Error” message is typically caused by the misspelled name or non-

existent Docker container in the the DockerHub, or container crashing during the

startup.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 14

To assure non-blocking operation of the Broker module, it communicates with other

DockerSpaces modules exclusively via standard message-passing mechanism of the Go

language.

Figure 7 DockerSpaces command-line parameters

DockerSpaces has a number of command-line parameters (see Figure 7), which enable sizing

and scaling DockerSpaces across multiple computers in the cluster, providing access to the

CUDA GPU resources, using private container repository, and more. Particularly, the

command-line parameter “-release” (default 1800 seconds) can be set to a higher value if

DockerSpaces is used to schedule batch-jobs such as neural network training jobs or scaling a

worker pool servicing a Rabbit MQ – both of these uses are very relevant to SELMA, as they

enable continuous massive stream learning via continuous retraining of neural models, as well

as tight integration with Maestro Orchestrator employing RabbitMQ. These command-line

parameters can be passed to both the standalone DockerSpaces executable, or optionally also

to DockerSpaces packed as a Docker container (as was illustrated in the Section 2.1).

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 15

2.3 Integration of Docker Spaces in Monitio and Plain X

The UC1 and UC2 prototypes, Monitio and plain X, take advantage of the worker management

and scalability of DockerSpaces through the SELMA Maestro orchestrator (introduced in

D4.1). In this setup (Figure 8), Maestro handles the orchestration of dependency graphs of NLP

jobs so that they occur in the correct order, and DockerSpaces handles worker allocation,

placement and replication. This architecture allows plain X and Monitio to scale by integrating

more compute servers for NLP workers to scale into.

Figure 8 How DockerSpaces integrates with plain X and Monitio

DockerSpaces is being integrated in the UC1 and UC2 prototypes, Monitio and plain X,

respectively. At the time of the writing of this deliverable, plain X is already calling translation

models through DockerSpaces, whereas the work in Monitio is in progress.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 16

3. Continuous software support in SELMA

In SELMA project we developed the new open-source DockerSpaces technology to streamline

and scale AI applications in the NLP domain, particularly those developed within the SELMA

WP2 and WP3. The issue at stake is that, even open-source libraries change, and then a code

written in 2022, may not work in 2026 (or later), as our consortium has already witnessed from

the SUMMA project (2016-2019), a direct predecessor of the current SELMA project (2021-

2023).

Continuous maintaining of systems that depend on external libraries and dealing with legacy

systems is a never-ending challenge from software engineering point of view. For many

reasons, including security ones, software needs to be updated often. However, such updates

may break the current stack. Also, for some languages and frameworks, e.g., R or Python,

packages need to have the commitment of a developer to solve its bugs. Otherwise, they are

removed from the current packages and left as legacy. Thus, a process is needed if we want to

support, for a few years, the current software stack.

With DockerSpaces we attempted to solve the software longevity / reliability issue by

“freezing” the versions of the software and packages used and keep them as a Docker container

image with explicit version control and local backup in the form of large ZIP files, to gain

independence from the DockerHub cloud infrastructure. DockerSpaces allow to largely forego

external cloud infrastructures such as MS Azure, Google Cloud, Digital Ocean, AWS, IBM

Watson, HuggingFace.io, etc. as they are troublesome over time – the cloud service providers

change or retire APIs, change pricing schedules, privacy and data security requirements may

change.

The “freezing” requirement applies also to the underlying operating system. Ubuntu has a set

of releases, the Long-Term Support (LTE) ones, that keep the stable versions. In SELMA we

have created an “air gapped” Ubuntu Linux 20.04 LTS installation package with Docker and

GPU CUDA drivers to protect against background software updates over the Internet, as well

as expired certificates and similar causes of long-term service failures, see

https://github.com/SELMA-project/BootFlash.

D4.3 Intermediate platform with continuous massive stream learning NLP capabilities 17

DockerSpaces approach has got initial traction also outside SELMA project – DockerSpaces

were evaluated by the Deutsche Welle computing operations staff, integrated with the IMCS

startup PiniTree.com ontology editor software suite, and included as a software and data

archiving technology in the multilateral proposal submitted to HORIZON-CL4-2022-

HUMAN-02 call. Our intention is to promote DockerSpaces widely in the open-source

community along with other recent “Spaces” initiatives like GitHub Spaces, HuggingFace

Spaces, Google Spaces, Data Spaces, etc.

4. Conclusion

This document presents the intermediate SELMA platform release (originally described in

deliverables D4.1 and D4.2) with the focus on the novel DockerSpaces technology as the

enabling factor for the continuous massive stream learning developed in WP2, WP3 and

described in separate deliverables D2.1, D2.2, D2.4, and D2.5.

