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Executive Summary 

This report presents the progress made during the second year in the SELMA project on speech 

and language processing. For speech processing, the research work focused mainly on the use 

of end-to-end neural models, especially based on model pretrained under self-supervision and, 

this year, on the use of some very recent evolutions of wav2vec 2.0 models like SAMU-XLSR 

(Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation) for 

cross lingual transfer.  

  

For speech processing, the work focused mainly on the use of models 

trained under self-supervision, especially to address cross-lingual 

knowledge transfer 

 

 

The SELMA project was strongly involved in the LeBenchmark initiative that permitted to 

pretrained wav2vec 2.0 models on 7K hours of speech in French language, and compare them 

to wav2vec 2.0 models pretrained on English-only data or multilingual data (containing 53 

different languages). 

These models have also been fine-tuned on downstream tasks directly related to the SELMA 

project: speech recognition, speech translation, semantic concept extraction from speech, 

named entity recognition from speech. 

In parallel, during the first year, some baseline automatic speech recognition systems driven by 

hybrid Hidden Markov Model and Deep Neural Network (HMM/DNN) acoustic models have 

been developed for some languages (English, French, Latvian). Some of these ASR systems 

have been integrated to the SELMA platform as NLP components delivered as Docker 

containers. 

A first speech synthesis engine has been built on Brazilian Portuguese broadcast news provided 

by Deutsche Welle. 
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During the second year, we prepared the data to pretrain a SELMA wav2vec 2.0, and offered 

solutions to deal with low resource scenario for spoken language understanding (SLU) and to 

port an SLU model from a language to another one. 
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1. Introduction 

Work Package 3 aims to develop and make advances in state-of-the-art natural language 

processing technologies, with a special focus on speech processing. In the last decade, such 

technologies have made considerable progress through the emergence of the deep learning 

paradigm, but in many tasks, these approaches are still far from solving the most relevant 

research questions.  

One very current hot topic in the speech and language research community is the use of models 

pretrained by self-supervision. Such deep neural models are trained on huge amounts of 

unlabeled data. The BERT model, which is dedicated to text processing, has been introduced 

by Google (Devlin 2019, https://arxiv.org/abs/1810.04805) in 2018: the main state-of-art 

systems for any NLP tasks are based on the use of deep neural models derived from BERT. The 

use of BERT-like models consists of first pretraining a model through self-supervised learning 

on a very huge amount of unlabeled data and then fine-tuning it on (small) in-domain labeled 

data by supervised learning. 

Such an approach has been proposed for speech processing with the introduction of the wav2vec 

models in 2019 by Facebook (Schneider 2019, https://arxiv.org/abs/1904.05862). Significant 

improvements were proposed in 2020 with the wav2vec 2.0 models (Baevski 2020, 

https://arxiv.org/abs/2006.11477): it was shown that it is possible to reach low word error rates 

(<10%) by exploiting only 10 minutes of manually transcribed speech (audiobook), after 

pretraining on 960 hours of untranscribed audio.  

Pretraining such model needs a lot of computation power and lot of questions are still open 

about their robustness to acoustic conditions and languages. In the framework of the SELMA 

project, we brought strong efforts during this first year to master this approach and to pretrain 

French wav2vec 2.0 models and fine-tuned them into several downstream task. This work was 

made in association to external partners (University of Grenoble-Alpes, France) and was 

possible thanks to the use of the French Jean Zay supercomputer. Some convincing results are 

presented in this report and, taking benefit from this experience, a SELMA model dedicated to 

Deutsche Welle multilingual broadcast news audio is under construction: during Y2 we have 

collected and prepared the training data that are described in this report. 
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In addition to this study on wav2vec 2.0 models, we work on speech synthesis on Deutsche 

Welle data (from Brazilian Portuguese broadcast news): our first architecture is presented in 

this report (the same architecture as Y1), that has been kept during Y2 for new experiments.  

We also built more classical hybrid HMM/DNN ASR systems that have been integrated into 

the SELMA platform. 

During the second year, we also proposed a new approach for low resource scenario in the 

context of named entity recognition from speech through an end-to-end neural approach – a 

scientific publication has been submitted, accepted and presented at Interspeech 2022 

(Mdhaffar et al., 2022). 

Taking benefit to the work made during Y1 in the SELMA project, we also proposed new 

contributions on language portability of end-to-end models dedicated to semantic extraction 

from speech – a scientific publication has been submitted and accepted at the IEEE Workshop 

on Spoken Language Technologies (Laperrière et al., 2023). 
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2. The LeBenchmark initiative: end-to-end speech 

recognition and translation based on speech unit 

representation learned through self-supervised 

training  
Self-Supervised Learning (SSL) based on huge amounts of unlabeled data has been explored 

successfully for image and natural language processing (Bachman et al., 2019; Chen et al., 

2020; Devlin et al.,  2018; Raffel et al., 2019). Recently, researchers investigated SSL from 

speech as well and successfully improved performance on downstream tasks such as speech 

recognition (Baevski et al., 2019; Kawakami et al., 2020). 

As SSL from speech is a rapidly evolving domain, new models are unfortunately evaluated on 

different datasets, most of which focus on the English language. In order to carefully assess the 

progress of speech SSL model-wise and application-wise, common benchmarks are needed. 

While NLP benchmarking is now widely discussed (Ruder, 2021), multi-task benchmarks are 

less common in speech despite the fact that the field has a long tradition of evaluation (see for 

instance long-term NIST and DARPA shared tasks for ASR).  

In our papers Evain et al., 2021-A and Evain et al., 2021-B, we propose to contribute to this by 

providing a reproducible and multifaceted benchmark for evaluating speech SSL models. By 

benchmark, and following the definition of Schlangen, 2021, we mean an ensemble of tasks 

that allow to discriminate learners (i.e., SSL models) based on their ability to perform well on 

those tasks. 

We propose an initial set of four main tasks (10 sub-tasks overall), measuring specific speech 

challenges in the French language: Automatic Speech Recognition (ASR), Spoken Language 

Understanding (SLU), Speech Translation (AST), and Emotion Recognition (AER). In this 

document, we present the main results obtained for the first three tasks, while also including 

results on Named Entity Recognition (NER). The totality of our results can be found in the 

original papers (Evain et al., 2021-A and Evain et al., 2021-B), as well as in the website’s leader 

board:  http://lebenchmark.com . 
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In summary, our investigation enables to assess the impact of pre-trained speech models that 

differ along several dimensions: language used for pre-training (French, English, multilingual), 

amount of raw speech used for SSL pre-training (1k, 3k, or 7k hours), model size (base, large). 

For reproducibility, we also provide pre-trained SSL models learned on a large and 

heterogeneous collection of speech utterances and believe this is a strong contribution to speech 

technologies in French. 

2.1 Background 

SSL has been recently proposed as an interesting alternative for data representation learning, as 

it requires no annotated data. Such learned representations have been very successful in  

computer vision (Bachman et al., 2019; Chen et al., 2020), and language (Devlin et al.,  2018, 

Peters et al., 2018). SSL from speech consists of resolving pseudo-tasks, which do not require 

human annotation, as a pre-training for the real tasks to solve. These pseudo-tasks target 

predicting the next samples, or solving ordering problems. For instance, Autoregressive 

Predictive Coding (APC) considers the sequential structure of speech and predicts information 

about a future frame (Chung et al., 2019; Chung and Glass, 2020-A), whereas Contrastive 

Predictive Coding (CPC) distinguishes a future speech frame from distractor samples (Baevski 

et al., 2019, Schneider et al., 2019), which is an easier learning objective compared to APC. 

Such representations have been shown to improve performance in several speech tasks (Chung 

and Glass, 2020-B), while being less sensitive to domain and/or language mismatch (Kawakami 

et al., 2020) and being transferable to other languages (Riviere et al., 2020). 

In 2020, a strong speech SSL baseline appeared: the Wav2Vec2.0 model (Baevski et al., 2020) 

which relies on the CPC idea of Baevski et al., 2019 and Schneider et al., 2019 but with discrete 

speech units that are used as latent representations and fed to a Transformer network to build 

contextualized representations. Several other bi-directional encoders were also proposed 

recently: Speech-XLNet (Song et al., 2019), Mockingjay (Liu et al., 2019) and Wang et al., 

2020. A few recent studies were also related to multilingual SSL models trained on very large 

multilingual corpora (Conneau et al., 2020, Wang et al., 2021). 

While there are multiple evaluation benchmarks to assess pre-trained models in NLP (for 

instance lue for English, flue for French, and klue for Korean), we are aware of only one similar 

initiative for speech SSL model evaluation: the Speech processing Universal PERformance 



   

 

 

D3.4 Intermediate progress report on speech and natural language processing 11 

Benchmark (SUPERB) (Yang et al., 2021) which however  targets English only and does not 

share pre-trained SSL models as we do. 

2.2 Gathering a Large and Heterogeneous Speech Collection in French 

Recently, large multilingual corpora that include French have been made available, such as 

MLS (Pratap et al., 2020, 1,096 hours) and Voxpopuli (Wang et al., 2021, +4,500 hours). 

However, these are restricted to either read or well-prepared speech, failing to provide diversity 

in the speech samples, such as accented, spontaneous and/or affective speech.  

We gathered a large variety of speech corpora in French that cover: 

• Different accents: MLS (Pratap et al., 2020), African Accented Speech (SLR57), CaFE 

(Gournay et al., 2018); 

• Acted emotions: GEMEP (Bänziger et al., 2012), CaFE (Gournay et al., 2018), Att-

Hack (Le Moine et al., 2020); 

• Telephone dialogues : PORTMEDIA (Lefèvre et al., 2012); 

• Read sentences: MLS (Pratap et al., 2020), African Accented French (SLR57), MaSS 

(Boito et al., 2020); 

• Spontaneous sentences: CFPP2000 (Branca-Rosoff et al., 2012), ESLO2 (Eshkol-

Taravella et al., 2012), MPF (ORTOLANG-MPF), TCOF (ORTOLANG-TCOF), 

NCCFr (Torreira et al., 2010);  

• Broadcast speech: EPAC (Estève et al., 2010); 

• Professional speech: Voxpopuli (Wang et al., 2021).  

Compared to MLS and Voxpopuli, our dataset is more diverse, carefully sourced and contains 

detailed metadata (speech type, and speaker gender). Moreover, compared to these, it has a 

more realistic representation of speech turns in real life. Statistics are reported in Table 1. 
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Table 1 Statistics for the speech corpora used to train SSL models according to gender information (male / 
female / unknown). The small dataset is from MLS only. Every dataset is composed of the previous one + 

additional data; MPF, TCOF and CFPP2000 appear twice with different stats as data extraction changed; 
duration: hour(s):minute(s) 

 

• Pre-processing for SSL training: Recordings were segmented using time stamps from 

transcriptions. We retrieved, when available, speaker labels and gender information. 

Following Baevski et al., 2020, we removed utterances shorter than 1s, and longer than 

30s. When possible, overlapping speech sentences were also removed. When necessary, 

audio segments were converted to mono PCM 16bits, 16kHz. 

• Small dataset (approximately 1k hours): It is only composed of the MLS corpus for 

comparison with Wav2Vec2.0 Baevski et al., 2020 which uses only read English speech. 

It is also gender balanced.  
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• Medium dataset (approximately 3k hours): It includes 2,933 hours of speech, from 

which 1,115 hours is read speech, 1,626 hours broadcast speech, 123 hours spontaneous 

speech, 38 hours acted telephone dialogues, and 29 hours acted emotional speech. 

Regarding gender, we collected 1,824 hours of speech from male speakers, 1,034 hours 

from female speakers, and 74 hours from unknown gender.  

• Large dataset (approximately 7.7k hours): It has 4 additional corpora: MaSS, NCCFr 

and Voxpopuli (unlabeled + transcribed). It includes 7,739 hours of speech, from which 

1,135 hours is read speech, 1,626 hours broadcast speech, 165 hours spontaneous 

speech, 38 hours acted telephone dialogues, 29 hours acted emotional speech, and 4744 

hours professional speech. Except for NCCFr, no info about gender is given in the added 

datasets. 

2.3 Training and Sharing SSL Models 

The LeBenchmark provides seven Wav2Vec2.0 models pretrained on the gathered French data 

described above. Following Baevski et al., 2020, two different Wav2Vec2.0 architectures 

(large and base) are coupled with our small (1K), medium (3K) and large (7K) corpora to form 

our set of Wav2Vec2.0 models: W2V2-Fr-1K-base, W2V2-Fr-1K-large, W2V2-Fr-3K-base, 

W2V2-Fr-3K-large, W2V2-Fr-7K-base, W2V2-Fr-7K-large.  

Hyperparameters and architectures for base and large are identical to the ones first introduced 

in Baevski et al., 2020. W2V2-Fr-1K, W2V2-Fr-3K and W2V2-Fr-7K are trained respectively 

for 200K, 500K, 500K and 500K updates on 4, 32, 32 and 64 Nvidia Tesla V100 (32GB), with 

one update corresponding to a call to the .backward() function in PyTorch. Detailed summary 

of the hyperparameters used to train our SSL models can be found in Table 2. In practice, 

training is stopped at a round number of updates once the loss observed on the development set 

of the MLS corpus reaches a stable point. Pre-trained Wav2Vec2.0 models are shared with the 

community via HuggingFace for further integration with well-known toolkits such as 

SpeechBrain, Fairseq or Kaldi. 

Pre-existing Wav2Vec2.0 models obtained from Fairseq are also considered in downstream 

experiments. First, XLSR-53-large is used as a comparison to multilingual models. Then, 

W2V2-En-base and W2V2-En-large (LS960) are used to assess English representations from 
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LibriSpeech. For the sake of conciseness, we remove the prefix W2V2- in all our results tables 

in the next section. 

Model Training 

Data 

Transformer 

Blocks 

Model 

Dimension 

Inner 

Dimension 

Heads Updates 

Fr-1K-base 1,096 h 12 768 3,072 8 200K 

Fr-1K-large 1,096 h 24 1024 4,096 16 200K 

Fr-3K-base 2,933 h 12 768 3,072 8 500K 

Fr-3K-large 2,933 h 24 1024 4,096 16 500K 

Fr-7K-base 7,739 h 12 768 3,072 8 500K 

Fr-7K-large 7,739 h 24 1024 4,096 16 500K 

Table 2 Hyperparameters of our pre-trained SSL models 

 

 

 



   

 

 

D3.4 Intermediate progress report on speech and natural language processing 15 

3. LeBenchmark results on speech recognition, 

speech translation and other downstream tasks 

We benchmark SSL models on four different tasks: Automatic Speech Recognition (ASR), 

Speech Language Understanding (SLU), Automatic Speech Translation (AST), and Named 

Entity Recognition (NER). Since our goal is to evaluate the impact of SSL for the best baselines 

for each task addressed, we have a different architecture for each task, and it corresponds to the 

best baseline performance we could obtain using MFCC/MFB features. As a different 

architecture/approach is used for each task, we evaluate the different SSL models as feature 

extractors for these tasks. These ‘SSL extractors’ are either ‘task agnostic’ or ‘task specific’ 

(SSL models fine-tuned on the task data), as further explained below. 

3.1 Automatic Speech Recognition (ASR) Results 

Automatic Speech Recognition (ASR) consists in transcribing the content of a speech utterance. 

In this section, we present ASR results using an end-to-end model and two datasets. Results 

focus on larger Wav2vec2.0 models (3K and 7K), as these are the ones for which we notice the 

most expressive improvements. 

! Datasets: The ASR tasks target two different types of corpora: Common Voice 

(Ardila et al. 2020 ) and ETAPE (Gravier et al. 2012). Common Voice is a very 

large crowd-sourced corpus (477 hours) of read speech in French with transcripts 

(train: 428h, dev: 24h, and test: 25h), while ETAPE is a smaller (36 hours) but more 

challenging corpus composed of diverse French TV broadcast programs (train: 22h, 

dev: 7h, and test: 7h).  

! Architecture: Our models are implemented with the SpeechBrain toolkit (Ravanelli 

et al., 2021). The baseline system is fed by 80-dimension log Mel filterbank (MFB) 

features and is based on an encoder/decoder architecture with attention. When used 

with an SSL pre-trained Wav2Vec2.0 model, the system simply adds an additional 

hidden layer and an output layer on top of a Wav2Vec2.0 architecture. 
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! Results: Table 3 presents the results achieved with ASR systems on French 

Common Voice 6.1 and on ETAPE. Before the use of Wav2vec2.0 models for ASR, 

the baseline MFB-based system (first line) was the state-of-the-art e2e model on 

CommonVoice/French. Other lines of the table present different Wav2vec2.0 

models fine-tuned on labeled ASR data from CommonVoice or ETAPE. 

Wav2vec2.0 base and large models provided by LeBenchmark outperform clearly 

En-large and XLSR-53-large models. The best model is Fr-3K-large, pretrained on 

a smaller training dataset than Fr-7K-large, and it provides the best results on all the 

experiments.  

!  

Corpus CommonVoice ETAPE 

Features Dev Test Dev Test 

MFB 17.67 (0.37) 20.59 (0.41) 54.03 (1.33) 54.36 (1.32) 

En-large 12.05 (0.23) 14.17 (0.52) 42.14 (0.72) 44.82 (0.74) 

XLSR-53-large 16.41 (0.27) 19.40 (0.29) 58.55 (0.65) 61.03 (0.70) 

Fr-3K-base 11.25 (0.23) 13.22 (0.24) 26.14 (0.70) 28.86 (0.79) 

Fr-3K-large 8.34 (0.18) 9.75 (0.20) 23.51 (0.68) 26.14 (0.77) 

Fr-7K-base 10.84 (0.21) 12.88 (0.24) 25.13 (0.68) 28.16 (0.79) 

Fr-7K-large 8.55 (0.18) 9.94 (0.21) 24.14 (0.70) 27.25 (0.78) 

Table 3 ASR results (WER%) on Common Voice and ETAPE corpora, with pre-trained Wav2vec2.0 models 
further fine-tuned on labeled ASR data. Gray numbers indicate 95% confidence intervals computed using 

bootstrap re-sampling as proposed in Bisani and Ney, 2004 

 

3.2 Automatic Speech Translation (AST) Results 

Automatic speech-to-text translation (AST) consists in translating a speech utterance in a source 

language to a text in a target language. In this work, we are interested in translating directly 

from French speech to text in another language. 
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• Dataset: We selected subsets having French as the source in the multilingual TEDx 

dataset (Salesky et al., 2021). Our benchmark covers translation directions from French 

to three target languages: English (en), Spanish (es), and Portuguese (pt), with the 

following training sizes: 50h (en), 38h (es), and 25h (pt).  

• Experiments: Our baselines are models using 80-dimensional MFB features. For 

learned representations derived from SSL models, we focused on the feature extraction 

approach where features are extracted from either task-agnostic or task-specific pre-

training. Task-agnostic pre-training refers to the direct use of SSL models as feature 

extractors whereas the task-specific method consists of one additional phase where the 

SSL models are further trained on the in-domain task data, with (supervised fine-tuned) 

or without (self-supervised fine-tuned) labels.  

We performed supervised fine-tuning with speech transcriptions as labels and leave 

supervised fine-tuning with AST data for future work. In the task-specific scenario, we 

only considered three SSL models: two best French SSL models (Fr-3K-large and Fr-

7K-large) and one best non-French SSL model (XLSR-53-large). Since the French 

speech is overlapped between the language pairs, we selected the pair having the most 

speech data (fr-en) to perform task-specific pre-training and used the obtained models 

to extract features for the remaining pairs (fr-es and fr-pt). For a fair comparison, we 

did not use additional data augmentation technique nor ASR encoder pre-training in the 

experiments.  

• Architecture: We used a small Transformer (Vaswani et al., 2017) architecture having 

6 layers of encoders, 3 layers of decoders, and hidden dimension 256 in all experiments. 

Following previous work (Nguyen et al. 2020; Evain et al. 2021-A), we inserted a block 

of Linear-ReLU before convolutional layers in the speech encoder for parameter 

efficiency and model performance reasons. 

• Results: Table 4 displays the results of the AST experiments. One can observe that SSL 

features, whether task-agnostic or task-specific and whether being pre-trained on 

English, French, or multilingual data, outperform the baselines using MFB features by 

a large margin (except for the task-agnostic multilingual model XLSR-53 on the two 

pairs fr-es and fr-pt, which are in very low-resource settings).  
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Comparing blocks: Among the three groups using SSL features (task-agnostic pre-

training, task-specific self-supervised, and task-specific fine-tuned for ASR), the ASR 

fine-tuning approach (c) yields the best results. We observe considerable improvements 

from task-specific self-supervised (b) to task-specific fine-tuned (c) (+6.19, +8.50, 

+8.53 on average for en, es, and pt, respectively) while the benefits of using self-

supervised fine-tuning compared to task-agnostic pre-training are only marginal or even 

slightly negative. 

The substantial gains when using the supervised fine-tuning approach (even with the 

somehow indirect signal of transcripts for the AST downstream task) shows that giving 

more signals of the task-specific data to the SSL models is helpful. In particular, in the 

case of task-specific self-supervised fine-tuning (b), we further trained the SSL models 

for 20k more steps on the raw task-specific data, whereas in ASR fine-tuned scenario 

(c), we used raw data plus the transcripts to guide the SSL models. 

Task-agnostic SSL: Focusing on task-agnostic block (a), we see that French SSL 

models clearly outperform those pre-trained on English and multilingual data. 

Multilingual XLSR-53 model surpasses the English models on fr-en, yet all of them fail 

to generate meaningful translations on fr-es and fr-pt where little training data is 

available.  

Comparing across different French SSL model sizes (base vs large), the large 

architecture yields considerable improvements (nearly 3 to 6 BLEU points) over its base 

counterpart. When looking into the French SSL models with different amounts of pre-

training data (1K, 3K, and 7K), we observe large gains for the base architecture from 

using 1K to using 3K or more pre-training data. There is, however, no significant 

difference between base models using 3K and 7K data. Using 7K data even hurts the 

performance on the pair fr-pt. On the other hand, for the large network, using more data 

consistently improves the performance on all language pairs. 

Task-specific SSL: Finally, moving on to task-specific models, Fr-7K-large is the best-

performing model (or being on par with the best one) in each group. Noticeably, there 

is a huge improvement when using the ASR fine-tuning approach (c) for the 

multilingual XLSR-53 model. The method considerably boosts the performance of the 
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multilingual model (compared to using it directly or further pre-training it on the task 

data) and makes it even on par with the best French SSL models.  

Features 
Valid Test 

en es pt en es pt 

MFB 1.15 (0.27) 0.67 (0.15) 0.61 (0.13) 1.10 (0.14) 0.87 (0.12) 0.32 (0.03) 

(a) Task agnostic pre-training 

En-base 5.54 (0.27) 1.30 (0.17) 0.54 (0.11) 5.20 (0.28) 1.47 (0.15) 0.38 (0.05) 

En-large 4.11 (0.25) 1.67 (0.20) 0.32 (0.03) 3.56 (0.22) 2.29 (0.18) 0.43 (0.05) 

Fr-3K-base 15.05 (0.49) 13.19 (0.25) 4.44 (0.29) 14.80 (0.47) 14.27 (0.44) 4.72 (0.25) 

Fr-3K-large 17.94 (0.51) 16.40 (0.49) 8.64 (0.34) 18.00 (0.51) 18.12 (0.48) 9.55 (0.36) 

Fr-7K-base 15.13 (0.45) 12.78 (0.40) 2.65 (0.20) 14.50 (0.45) 13.61 (0.44) 2.66 (0.23) 

Fr-7K-large 19.23 (0.54) 17.59 (0.49) 9.68 (0.37) 19.04 (0.53) 18.24 (0.49) 10.98 (0.41) 

XLSR-53-large 7.81 (0.33) 0.49 (0.13) 0.43 (0.07) 6.75 (0.29) 0.52 (0.08) 0.36 (0.05) 

(b) Task specific pre-training (self-supervised on mTEDx) 

Fr-3K-large 18.54 (0.53) 16.40 (0.48) 8.81 (0.36) 18.38 (0.52) 17.84 (0.48) 10.57 (0.41) 

Fr-7K-large 19.65 (0.55) 17.53 (0.47) 9.35 (0.36) 19.36 (0.54) 18.95 (0.53) 10.94 (0.38) 

XLSR-53-large 6.83 (0.33) 0.54 (0.14) 0.34 (0.03) 6.75 (0.32) 0.34 (0.03) 0.29 (0.03) 

(c) Task specific pre-training (fine-tuned for ASR on mTEDx) 

Fr-3K-large 21.09 (0.53) 19.28 (0.53) 14.40 (0.47) 21.34 (0.58) 21.18 (0.52) 16.66 (0.49) 

Fr-7K-large 21.41 (0.51) 20.32 (0.49) 15.14 (0.48) 21.69 (0.58) 21.57 (0.52) 17.43 (0.52) 

XLSR-53-large 21.09 (0.54) 20.38 (0.56) 14.56 (0.45) 20.68 (0.53) 21.14 (0.55) 17.21 (0.54) 

Table 4 BLEU on valid and test sets of multilingual TEDx (mTEDx). The highest value in each group (task-
agnostic pre-training, task-specific self-supervised, and supervised fine-tuning) is underlined while the best 
value in each column is highlighted in bold. Gray numbers denote the standard deviation computed using 

bootstrap re-sampling (Koehn et al. 2004) 

 

3.3 Spoken Language Understanding (SLU) Results 

Spoken Language Understanding (SLU) aims at extracting a semantic representation from a 

speech signal in human-computer interaction applications (De Mori, 1997). Given the difficulty 
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of creating an open-domain SLU application, many works focus on specific domains. We focus 

on the hotel information and reservation domain provided within the French corpus MEDIA 

(Bonneau Maylard et al., 2006; Quarteroni et al., 2009). 

• Dataset: The MEDIA corpus is made of 1~250 human-machine dialogues acquired 

with a Wizard-of-Oz approach, where 250 users followed 5 different reservation 

scenarios. Spoken data were manually transcribed and annotated with domain concepts, 

following a rich ontology. The official corpus split is made up of 12,908 utterances (41.5 

hours) for training, 1,259 utterances (3.5 hours) for development and 3,005 utterances 

(11.3 hours) for test. We note that, while all turns have been manually transcribed and 

can be used to train ASR models, only user turns have been annotated with concepts 

and can be used to train SLU models. This results in only 41.5 hours of speech training 

data for ASR models, and only 16.8 hours for SLU models. 

• Architecture: All our models are based on LSTM (Hochreiter and Schmidhuber, 1997) 

seq2seq with attention (Bahdanau et al., 2014), being similar to the one proposed in 

previous works (Dinarelli et al., 2017; Dinarelli et al., 2020, Evain et al., 2021-A). In 

particular we use a similar speech encoder employing a pyramidal hierarchy of RNN 

layers like Chan et al., 2016 and Evains et al., 2021. 

The decoder has been also improved, integrating two attention mechanisms: one as 

usual for attending the encoder's hidden states; the other for attending all previous 

decoder prediction's embeddings, instead of the previous prediction only like in the 

original LSTM-based encoder-decoder models (Bahdanau et al., 2014). Our model is 

implemented using the  Fairseq library (Ott et al., 2019). 

• Experiments: We use a total of 3 bidirectional LSTM layers of size 256 stacked in a 

pyramidal fashion in our encoder and the LSTM decoder has 2 layers of size 256. In 

addition to using spectrogram features and features from task agnostic SSL models, we 

also use features from task specific models (SLU on MEDIA). Two types of task-

specific pre-training are performed: self-supervised which consists in resuming the SSL 

model training using the MEDIA training data and minimizing the Wav2Vec 2.0 loss 

((b) self-supervised on MEDIA in the results table, also called task-adaptive pre-training 

in Gururangan et al., 2020); and ASR supervised  ((c) fine-tuned for ASR on MEDIA in 
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the results table) which consists in fine-tuning the full SSL model for a supervised 

downstream task with a CTC loss minimization objective (Graves et al., 2006).  

Finally, in this work we chose to fine-tune models with respect to the ASR task on 

MEDIA (not the SLU one) to see how it compares to self-supervised fine-tuning. We 

leave fine-tuning with respect to SLU for future work. 

• Results: The results for SLU obtained with different speech representations are shown 

in Table 5. They are given in terms of Concept Error Rate (CER), computed the same 

way as Word Error Rate (WER) but on concept sequences. CER are accompanied by 

standard deviations (in gray), computed with the bootstrap method of Bisani and Ney, 

2004 . 

We first note that our spectrogram baseline obtains a substantial improvement over the 

one in Evain et al., 2021-A . Such gain is due to the slightly different settings and model 

architecture. Using SSL model features as input resulted in an impressive drop in CER, 

even when using English SSL models (CER from 31.10 to 20.84 on the test set with the 

base model). 

Task-agnostic SSL: At best, among task-agnostic pre-trained models, we achieve a 

CER of 15.95 on the test data with Fr-3K-large features. Surprisingly, using features 

from the model trained with 7k hours of speech (Fr-7K-large), results are worse on both 

dev and test. In contrast, we also evaluated these models in terms of ASR performance, 

finding that the 7k-model led to the best results. 

Task-specific SSL: We performed task-specific pre-training only with the most 

effective SSL models: French 3k and 7k models and multi-lingual XLSR-53-large. The 

best overall pre-trained model is the 7k-model fine-tuned for ASR on MEDIA, though 

results are close to those obtained with features from the 3k-model (13.97 vs. 13.78). 

Indeed, our significance tests confirm that these two models are equivalent and they are 

significantly better than all the others. This shows that pre-trained SSL speech models 

can be specialized using task specific pre-training with either self-supervised learning 

on raw speech (block (b) in the table), or fine-tuning on raw speech and associated 

transcripts (block (c) in the table), the latter being slightly better than the former. 
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Features Dev Test 

Spectrogram from Evain et al., 2021-A 33.63 (1.28) 34.76 (0.83) 

spectrogram 29.07 (1.31) 31.10 (0.83) 

(a) Task agnostic pre-training 

En-base 22.38 (1.24) 20.84 (0.68) 

En-large 23.31 (1.31) 25.26 (0.77) 

Fr-1K-base 22.89 (1.26) 23.27 (0.76) 

Fr-1K-large 20.10 (1.10) 20.66 (0.72) 

Fr-3K-base 19.44 (1.11) 18.56 (0.67) 

Fr-3K-large 15.96 (1.02) 15.95 (0.62) 

Fr-7K-base 20.70 (1.07) 18.86 (0.68) 

Fr-7K-large 17.25 (1.02) 16.35 (0.66) 

XLSR-53-large 18.45 (1.15) 18.78 (0.66) 

(b) Task specific pre-training (self-supervised on MEDIA) 

Fr-3K-large 15.93 (1.01) 14.94 (0.60) 

Fr-7K-large 15.42 (1.03) 15.17 (0.60) 

XLSR-53-large 16.77 (1.09) 15.56 (0.61) 

(c) Task specific pre-training (fine-tuned for ASR on MEDIA) 

Fr-3K-large 14.49 (1.06) 13.97 (0.59) 

Fr-7K-large 14.58 (1.01) 13.78 (0.58) 

XLSR-53-large 16.05 (1.05) 15.46 (0.60) 

Table 5 End-to-end SLU decoding results (Concept Error Rate %) on the MEDIA corpus 
 

3.4 Named Entity Recognition (NER) Results 

Named Entity Recognition (NER) aims to locate and classify named entity mentions in speech 

transcripts into pre-defined categories (such as person names, organizations, locations, …). 
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• Dataset: The QUAERO data has been developed during the research project QUAERO 

(2008-2013). It consists in the manual annotation of named entities of the manual 

transcription of the ESTER1 corpus. ESTER1 Graves et al., 2004 is an evaluation 

campaign focusing on the evaluation of orthographic transcription, event detection and 

tracking, and information extraction. An official QUAERO test dataset has also been 

added. This entire corpus is composed of data recorded from French radio and TV 

stations between 1998 and 2004. The official corpus split is made up of 93.5 hours for 

training and 6.5 hours for testing. Named Entities often include seven major groups: 

person, location, organization, amount, time, production and function. Within the 

framework of the QUAERO project, an extended named entity annotation with 

compositional and hierarchical structure has been proposed (Galibert et al., 2011). The 

QUAERO dataset does not contain a development dataset. So, we use the ETAPE 

development part. ETAPE is a French dataset composed of data recorded from French 

radio and TV stations between 2010 and 2011. It is annotated with the same pre-defined 

categories of entities used in the QUAERO annotation. 

• Architecture: Our model is based on end-to-end approaches. The end-to-end system is 

composed of a large pre-trained French wav2vec model (LeBenchmark Fr-7K-large), a 

linear hidden layer of 1024 units, and a softmax output layer. The loss function used for 

the supervised fine-tuning step is the Connectionist Temporal Classification (CTC) loss 

function (Graves et al., 2006). 

• Results: The obtained results for NER are shown in Table 6. They are given in terms 

of Entity Error Rate (EnER), computed in the same way as Word Error Rate (WER) but 

only on entity sequences, exactly like the Concept Error Rate used for SLU. We 

compute the total EnER ‘All Entities’ and an EnER for each entity category. We report 

also results in term of WER for the transcription without entities. The results are 

obtained by using the flat version of the named entity representation retained in the 

QUAERO dataset (i.e., not a structured representation). 
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Features Test 

(a) Word Error Rate (WER) 

WER 10.9% 

(b) Entity Error Rate (EnER) 

All Entities 32.24% 

Entity ‘Person’ 27.60% 

Entity ‘function’ 52.84% 

Entity ‘organisation’ 46.24% 

Entity ‘location’ 27.09% 

Entity ‘production’ 70.87% 

Entity ‘amount’ 24.66% 

Entity ‘time’ 28.8% 

Table 6 End-to-end NER decoding results (Entity Error Rate %) on the QUAERO dataset 



   

 

 

D3.4 Intermediate progress report on speech and natural language processing 25 

4 Speech Synthesis 

Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural 

speech given text, is a hot research topic in speech, language, and machine learning 

communities. Thanks to the advances in deep learning and artificial intelligence, neural 

network-based TTS has significantly improved the quality of synthesized speech in recent 

years.  

In this section, the neural network-based architecture developed in SELMA for our first text-

to-speech engine is presented, in addition to the data used for the training process. Last, we 

discuss about how our work on speech synthesis applied to Brazilian Portuguese broadcast news 

could be evaluated. 

4.1 Architecture 

Our TTS system consists of two components, an acoustic model and a vocoder. The acoustic 

model generates acoustic features from linguistic features (text in our case), and the vocoder 

synthesizes waveform from the acoustic features. 

For the acoustic model, we conducted experiments with several architectures. This allowed us 

to draw the following conclusion: purely in terms of quality and naturalness Tacotron 2 [Shen 

et al, 2018] + DDC gave us the best performance. Other architectures like GlowTTS [Kim et 

al., 2020], SpeedySpeech [Vainer and Dusek, 2020] or FastSpeech [Ren et al., 2019] are faster 

and synthesize intelligible speech but not as good as Tacotron 2. 

Considering the vocoder, we also had multiple choices, we mainly worked on two architectures: 

Hifi-Gan [Kong et al., 2020] and WaveRNN [Kalchbrenner et al., 2018]. The first one did not 

give us the expected results, so we have decided to go for the second one. From the paper, there 

is not a significant difference between the two in terms of speech quality, the main difference 

is about inference time. Since we have no inference real-time constraints, this is not a problem. 

4.2 Data 

We use the audio news bulletins that are produced by DW's Brasil department to train the speech 

synthesis engine. The audio files have been downloaded from Youtube and the scripts were 
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retrieved from github in a repository with all the text scripts that DW uses to produce their 

weekday news podcasts. 

The dataset contains approximately 32 hours of speech from 8 speakers. The repartition of 

utterances and hours per speaker after cleaning is described below in Table 7. 

 

# Name Training utterances Hours 

1 Roberto 3510 8.5 

2 Alexandre 3348 7.7 

3 Philip 2759 6.0 

4 Leila 2077 5.1 

5 Bruno 679 1.7 

6 Marcio 554 1.3 

7 Clarissa 357 0.9 

8 Renate 295 0.7 

Table 7 Repartition of utterances and hours per speaker 

 

4.3 Evaluation     

Currently, we are still working on the evaluation part of the speech synthesis engine. The 

evaluation protocol can be divided into two parts. First, we will evaluate the accuracy of the 

speech synthesis using a speech recognition model. 

Using the original transcription and the output of an ASR model, we can compute the Word 

Error Rate (WER) which is a common metric for measuring speech-to-text accuracy of 

automatic speech recognition systems. 
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As this first evaluation protocol doesn’t measure the prosodic aspect of the TTS system, we 

have to introduce a second one involving human rating. The next step will be to organize a 

perceptual evaluation campaign where samples are rated by humans on a scale from 1 to 5 with 

0.5-point increments, from which a subjective mean opinion score (MOS) is calculated. 

A Mean Opinion Score (MOS) is a numerical measure of the human-judged overall quality of 

an event or experience. In telecommunications, a Mean Opinion Score is a ranking of the quality 

of voice and video sessions. 

A demo webpage with our first system here: click here to access our TTS demonstration 

webpage 
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5 Hybrid ASR system 

Classical hybrid automatic speech recognition systems are based on HMM/DNN acoustic 

models of phonemes, a dictionary of words with their explicit pronunciations (sequence of 

phonemes), and language models. 

Kaldi is a popular open-source toolkit designed to build such ASR systems. In SELMA, we 

implemented ASR systems for different languages using Kaldi, mainly to be integrated into the 

SELMA platform as the first ASR components. 

5.1 French ASR 

A Kaldi-based ASR system has been built for the French language. The acoustic models (AM) 

are trained on 40-dimensional high-resolution (hires) MFCC features with a state-of-the-art 

factorized time delay neural network (TDNN-F) architecture (Povey et al., 2018 ; Peddinti et 

al., 2015) on 300 hours of French Broadcast data with manual transcriptions. The acoustic 

model was trained using lattice-free maximum mutual information (LF-MMI) (Povey et al., 

2016) and cross-entropy criteria. Speed and volume perturbation have been applied for data 

augmentation (Ko et al., 2015). The word error rate got on Broadcast News data not included 

in the training data is around 17.5%. 

5.2 Latvian ASR 

The baseline ASR system for Latvian is trained using the Kaldi framework. The acoustic model 
has been trained on a general-domain Latvian speech corpus containing 100 hours of broadcast 
recordings (Pinnis at al., 2014) augmented with various noisy recordings and musical 
recordings from the MUSAN corpus (Snyder, 2015). The TDNN+LSTM neural network is 
trained on 40-dimension FBANK vectors. Language models (LM) are trained using the SRILM 
toolkit (Stolcke, 2002). Trigram language models pruned to 1e-8 are used in all experiments. 
The LM is trained on the Latvian portion of the CommonCrawl. A rule-based system is used to 
generate the pronunciation lexicon based on 52 phonemes. The word error rate (WER) is 
measured on 22 minutes of various radio and TV broadcasts and is around 10.5%. 
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5.3 English, German, Spanish, Arabic ASR 

Kaldi-based ASR systems for English, German, Spanish and Arabic have been developed by 
various partners (University of Edinburgh, IDIAP, QCRI) within the H2020 SUMMA project 
(Grant agreement: 688139) and released publicly afterwards.  

These legacy systems have been adapted for use in the SELMA project as baseline ASR 
systems, although technical incompatibility with the latest Kaldi versions and high WER around 
20% on broadcast news limit the scope of their use. 
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6 Preparing the data to pretrain the SELMA 

multilingual wav2vec 2.0 model 

Thanks to Deutsche Welle, the SELMA project has access to a high amount of multilingual 

speech data, that are audio or video documents related to news. Thanks to our experience 

coming from the LeBenchmark initiative and from the literature (Hsu et al., 2021) we expect 

that a wav2vec 2.0 pretrain on in-domain data (here, journalistic data) will get a better 

performance on this kind of data. So, we plan to pretrain a such model. 

In order to pretrain by self-supervision a wav2vec, we collected a huge amount of 

multilingual data provided by the Deutsche Welle partner. Statistics of the raw data are 

presented in Table 8: 

Language Type Items Duration Date range 
Arabic Audio 151 108 h 2021-08-06 > 2022-07-31 
  Video 6,15 965 h 2021-08-06 > 2022-07-31 
  All 6,301 1,073 h   
Brazilian Audio 963 90 h 2018-07-24 > 2022-07-30 
  Video 1,957 209 h 2018-07-24 > 2022-07-30 
  All 2,92 299 h   
Chinese Audio 640 279 h 2012-11-18 > 2022-07-31 
  Video 2,922 129 h 2012-11-18 > 2022-07-31 
  All 3,562 408 h   
Dari Audio 455 48 h 2017-08-15 > 2022-12-06 
  Video 721 85 h 2017-08-15 > 2022-12-06 
  All 1,176 133 h   
English Article 903 2 h 2021-01-02 > 2022-07-31 
  Audio 1,063 433 h 2021-01-02 > 2022-07-31 
  All 1,966 435 h   
French Audio 1,852 661 h 2020-06-05 > 2022-07-31 
  Video 974 92 h 2020-06-05 > 2022-07-31 
  All 2,826 752 h   
German Audio 99 34 h 2022-04-01 > 2022-07-31 
  Video 1,463 244 h 2022-04-01 > 2022-07-31 
  All 1,562 279 h   
Greek Audio 1,234 52 h 2013-06-05 > 2022-12-11 
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  Video 1,333 69 h 2013-06-05 > 2022-12-11 
  All 2,567 121 h   
Hausa Audio 10,763 6,252 h 2013-12-10 > 2022-07-31 
  Video 675 32 h 2013-12-10 > 2022-07-31 
  All 11,438 6,284 h   
Hindi Audio 50 6 h 2013-01-06 > 2022-07-31 
  Video 3,985 297 h 2013-01-06 > 2022-07-31 
  All 4,035 303 h   
Indonesian Video 3,019 232 h 2013-06-10 > 2022-07-31 
  All 3,019 232 h   
Pashto Audio 1,06 89 h 2013-06-28 > 2022-12-13 
  Video 847 89 h 2013-06-28 > 2022-12-13 
  All 1,907 177 h   
Persian Audio 1,824 375 h 2012-02-27 > 2022-07-31 
  Video 2,41 112 h 2012-02-27 > 2022-07-31 
  All 4,234 487 h   
Polish Audio 46 8 h 2012-12-20 > 2022-12-13 
  Video 2,414 139 h 2012-12-20 > 2022-12-13 
  All 2,46 148 h   
Russian Audio 98 33 h 2011-07-26 > 2022-07-31 
  Video 12,98 1,281 h 2011-07-26 > 2022-07-31 
  All 13,078 1,314 h   
Spanish Audio 70 110 h 2021-01-01 > 2022-07-31 
  Video 7,109 951 h 2021-01-01 > 2022-07-31 
  All 7,179 1,061 h   
Turkish Audio 5,257 713 h 2011-08-05 > 2022-07-31 
  Video 7,485 672 h 2011-08-05 > 2022-07-31 
  All 12,742 1,385 h   
Ukrainian Video 9,233 551 h 2012-12-05 > 2022-07-29 
  All 9,233 551 h   
Urdu Audio 2,769 302 h 2012-05-29 > 2022-10-14 
  All 2,769 302 h   
All All 94,974 15,743 h   

Table 8 Statistics of raw data shared by Deutsche Welle to be used to pretrained a multilingual wav2vec 2.0 
model 

 

These files have been processed in order to extract only speech segments and to specify the 

gender of the speaker involved for each speech segment. By the way, we aim to build a 
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gender-balanced and language-balanced pretraining data: we kept a maximum of 250 hours of 

speech for each language.  

The first SELMA multilingual wav2vec 2.0 is training. The model will be available in 2/3 

weeks and first experiments will be carried out to evaluate this model. The SpeechBrain 

toolkit, interfaced to the HuggingFace transformers library is used for this SSL training. 

 Notice that this model will be released under a (free and) very permissive licence in order to 

contribute to the advances of the research community. 
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7 Low resource spoken language 

understanding scenario  

In our low resource SLU scenario, an end-to-end model for ASR and a corpus of textual 

documents with named entity annotations but without the corresponding audios are available.  

Our approach (Mdhaffar et al., 2022) is based on the use of an external model trained to generate 

a sequence of vectorial representations from text. These representations mimic the hidden 

representations that could be generated inside an end-to-end automatic speech recognition 

model by processing a speech signal. A SLU neural module is then trained to use these 

representations as input and the annotated text as output. Last, the SLU module replaces the top 

layers of the ASR model to achieve the construction of the end-to-end model. 

To generate the simulated ASR hidden representations (or ASR embeddings), we train a 

sequence-to-sequence neural model, called Text-to-ASR-Embeddings model. Such an 

approach can be compared to propositions in literature that use synthetic voices to feed an 

ASR end-to-end model. 

We motivated our proposition for different reasons. First, the use of synthetic speech 

introduces some artifacts in the input of the ASR model. If the ASR model is fine-tuned on 

such synthetic voices, these artifacts will degrade the capability of the model to process 

natural voices. A solution to avoid this consists of freezing the weights of the bottom layers 

and only update the weights of the higher layers, in which the semantic is better encoded. 

Since the bottom layers were optimized to process natural speech, the quality of the 

embeddings computed from synthetic speech is not guaranteed, and can introduce a gap 

between embedding computed from natural and computed from synthetic speech. 

With our approach, we aim to reduce this gap. In addition, our approach needs less 

computation at training time than the ones based on synthetic speech, since we avoid the use 

of a consequent number of lower layers. 

To train this Text-to-ASR-Embeddings neural model, we must produce a training dataset 

composed of pairs of transcriptions, used as input, and sequences of ASR embeddings, used 

as output. To produce this training dataset, the end-to-end ASR model is used to transcribe its 
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training dataset. For each transcribed utterance, we extract a sequence of ASR embeddings 

from a hidden layer, and associate this ASR embedding sequence to the automatic 

transcription. When the entire ASR training data has been processed, the ASR embedding 

sequences and their associated automatic transcriptions are used to train the Text-to-ASR-

Embeddings model, as illustrated in (A) in the following figure. 

 

At this stage, we obtain a module able to simulate ASR embeddings from text. Our objective 

is then to train a neural SLU sub-module able to convert such a sequence of ASR embedding 

into an automatic transcription with SLU annotation, like annotation of named entities. 

For this purpose, we exploit the textual dataset with semantic annotation. For each sentence in 

this dataset, we first remove the semantic annotation to keep only the sequence of words. 

Thanks to the Text-to-ASR-Embeddings model, we transform this sequence of words to a 

sequence of ASR embeddings (B). We iterate this process for all the annotated sentences in 

the semantic textual dataset. We get a set of pairs composed of a sequence of ASR 

embeddings and the corresponding text sequence of words semantically annotated. Once the 

entire textual dataset has been processed, we use this data to train an SLU sub-module able to 

generate a sequence of words semantically annotated from a sequence of ASR embeddings 

(B). 

Finally, we plug the end-to-end ASR and the SLU sub-module (C). In order to merge the ASR 

model with the SLU sub-module, we keep all the ASR hidden layers needed to generate the 

ASR embeddings that can be mimicked by the Text-to-ASR-Embeddings model. The 

mimicked hidden layer is then connected to the SLU sub-module. 
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The final model is an end-to-end model able to transcribe and extract semantic information 

from speech, while no real paired training data exists. 

Our approach, based on artificial ASR embeddings generated from text, exhibits highly 

promising results outperforming alternative approaches based on the use of synthetic speech. 

These results, computed in terms of Name Entity Error Rate (NEER) are presented in the 

table 9. 

 

Training data    Dev Test 

ASR embeddings simulation 

(ours) 

47.6 

 

39.1 

Synthetic speech (all 

weights are updated) 

65.2 62.7 

Synthetic speech (frozen 

speech encoder) 

86.4 92.5 

Oracle (real audio) 45.9 34.1 

Table 9 Evaluation in NEER (%) of our approach to train an end-to-end NER model without paired training 
data compared to other approaches using speech synthesis, and compared to the ideal scenario when paired 

data is available 

 

We consider that this approach can be extended to similar SLU tasks such as slot filling, and 

opens new perspectives in different use cases where enriching or adapting the linguistic 

knowledge captured by an end-to-end ASR model is needed. 
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8 Language portability of spoken language 

understanding model 

SAMU-XLSR is based on the pre-trained multilingual XLSR on top of which all the 

embeddings generated by processing an audio file are connected to an attentive pooling 

module. Thanks to this pooling mechanism (which is followed by linear projection layer and 

the tanh function), the frame-level contextual representations are transformed into a single 

utterance-level embedding vector. Figure 1 summarizes the training process of the SAMU-

XLSR model. 

 

Figure 1 Training SAMU-XLSR 

 

Notice than the weights from the pre-trained XLS-R model continue being updated during the 

process. The utterance-level embedding vector of SAMU-XLSR is trained via knowledge 

distillation from the pre-trained language agnostic LaBSE model (Feng et al., 2022). The 

LaBSE model has been trained on 109 languages and its text embedding space is semantically 

aligned across these 109 languages. LaBSE attains state-of-the-art performance on various bi-
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text retrieval/mining tasks, while yielding promising zero-shot performance for languages not 

included in the training set (probably thanks to language similarities).  

Thus, given a spoken utterance, the parameters of SAMU-XLSR are trained to accurately 

predict a text embedding provided by the LaBSE text encoder of its corresponding transcript. 

During Y2, we investigate the use of SAMU-XLSR in order to train a Spoken Language 

Understanding neural model in French language and transfer it to the Italian language for 

which the amount of annotated data related to the SLU task (extraction of semantic 

concepts/values for hotel reservation task-oriented human/machine dialogue) is very low (less 

than 8 hours) or zero. In the zero shot scenario (the model is trained on French and evaluated 

on Italian), our SAMU-XLSR-based model can get a Concept Error Rate (CER) of 54.6% 

while a classical XSLR model get 85.3%. When a few data in Italian is available, the gain in 

CER is less significant (26.2% instead of 26.9%), but the gain in Word Error Rate is 

promising (17.8% instead of 20%). 

More details are available in (Laperrière et al., 2023). 
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9 Conclusion 

 

During the first year of the SELMA project, the use of self-supervised pre-training for end-to-

end speech processing tasks has been promising investigated with state-of-the-art results for 

different tasks like automatic speech recognition, speech translation, spoken language 

understanding, including named entity recognition from speech. 

Such approaches will be extended to other languages, and we are now (end of Y2) pretraining 

a multilingual SELMA models by self-supervision, in order to investigate cross lingual transfer 

and domain dependence of such models. News components (for speaker recognition, speech 

synthesis, end-to-end speech recognition, speech translation) for different languages will be 

deployed in the SELMA platform. 

During the second year, we propose solutions accepted by the international research community 

on low resource scenario for end-to-end named entity recognition from speech, and language 

portability. 
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