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Executive Summary 
This report is an incremental version of the previously delivered document describing the scientific 

advances of our natural language tasks under work package two (WP2), in the SELMA project. WP2 

is aimed to enable the SELMA system to learn automatically from a large-volume live multilingual 

stream of data. This document is structurally identical to the previous version, with incremental 

changes wherever applicable. As such, we report the advancements of our work on each of the sub-

tasks required to achieve WP2 targets: story segmentation, entity linking, named entity recognition, 

news classification, clustering, and summarization. The first two chapters will introduce the general 

framework and overview of the WP2, particularly introducing each sub-task separately. In the 

following chapters, we define our methodologies for each task in Section 3 and present our 

experimental results in Section 4. The last section will conclude this report by emphasizing future 

studies and user feedback ideas as well. 
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1. Introduction 
Continuous learning aims to enable information systems to learn from a continuous data stream across 

time. We, as human beings, can learn by building on our memories and applying past knowledge to 

understand new concepts. However, it is not easy for existing deep learning architectures to learn a 

new task without forgetting previously acquired knowledge. Unlike humans, existing machine 

learning ideas are primarily trained in an isolated environment and can be used effectively only for a 

limited time. Therefore, the produced models become less accurate over time due to the changing 

distribution or nature of the data. With the recent advancements in deep learning, the problem of 

continuous learning in natural language is becoming even more critical, as current approaches cannot 

effectively keep previously learned knowledge and adapt to new information simultaneously. 

The SELMA continuous learning platform specifically targets multilingual broadcast monitoring and 

production. With the exponential growth of online news content in several languages, the challenge 

is to avoid a language and cultural bottleneck. Hence, this work package eventually brings together 

many sources and makes information accessible to users in multiple languages, yet keeping relevant 

knowledge present in the original multilingual data sources.  

Multilingualism supports the opportunity of sharing valuable knowledge across languages. We, 

therefore, aim to propose a unified approach to multilingual media monitoring and content production 

by contributing to recent advances in deep learning, particularly breakthroughs in knowledge and 

language transfer and fine-tuning of task models from user feedback. High-quality and up-to-date 

cross-lingual text and entity representations are vital components of this work package. Computing 

and updating these representations via user feedback is an important research direction in the context 

of natural language on news data, as relevant entities, which have a defining role in news stories, take 

part in ever-evolving story contexts. 

To this end, this work package will create a high-performant modular platform for the ingestion and 

processing of data streams with the goal of training and maintaining multilingual natural language 

components. In this deliverable, we present our initial results based on the defined targets. Our 

proposed methods will finally create a distinctive setting for integrating high-quality user feedback 
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with massive amounts of data using stream learning techniques. Low-resource languages will also be 

addressed owing to the multilingual data context combined to transfer learning approaches. 

2. Architecture 
This work package enables the SELMA platform which learns automatically from a large-volume 

live multilingual stream of documents and continuously incorporate knowledge to update the models. 

Moreover, transfer learning will be investigated to improve scarce languages with knowledge from 

high-resource languages. 

The multilingual stream will be combined with the SELMA processing pipeline. A collection of news 

sources will serve as a reference to guide the natural language downstream tasks executed on the 

user-supplied data. We mainly research novel approaches to jointly extract named entities from the 

reference stream and link them to a knowledge base to enable the proposed methods. We also employ 

current practices to learn up-to-date contextual cross-lingual embedding representations for 

text/entities and efficiently search on these representations.  

In summary, it is possible to define these main goals for this work package, 

• Learning a representation for text and entities from the input reference stream 

• Identifying named entities and linking them to a knowledge base 

• Incorporating the user feedback into training and improvement of our models 

• Transferring knowledge between languages, whereas benefiting low-resourced languages 

To achieve these goals, we can define the primary tasks of this work package as in the following: 

Cross-lingual Stream Representations 

This task focuses on learning contextual word and entity representations captured from a live news 

article stream. Note that the extensive data scale makes this task particularly challenging, in addition 

to the emphasis on serving across several languages simultaneously. Hence, to enable knowledge 

transfer from higher- to lower-resourced languages, we aim to learn a cross-lingual representation 

space, i.e., a representation where word contexts from different languages are mapped into a shared 

space, to enable knowledge transfer from higher- to lower-resourced languages. Furthermore, unlike 
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other approaches that rely on dictionaries' cross-lingual training contexts, we seek to learn and 

incrementally update a cross-lingual representation specially geared towards the current and most 

relevant news content, focusing on the changing named entity representations. 

Named Entity Recognition and Linking 

This task aims to develop statistical models for detecting entities within news article streams and 

learning a mapping of these entities to a knowledge base link. This step is fundamental to performing 

content enrichment on the data stream. Therefore, we focus on deep contextualized representations 

and approach this problem under end-to-end architecture where we perform entity disambiguation 

and obtain the correct link. It is also essential to investigate the novel issue of incorporating a multi-

task learning approach over recent neural models. This sub-problem emphasizes context-dependent 

entity linking, which shares some ambiguity due to the polysemous nature of the entity, and primarily 

due to time-dependent context. Thus, we will focus on discovering new entities from the news stream, 

attribute unique knowledge-based IDs, and link further mentions of these entities together. A 

significant contribution of this work package will utilize zero-shot and transfer learning approaches 

to disambiguate and link new entities. We draw inspiration from relation extraction models and 

explore the entity co-location approach. 

Story Segmentation 

This task aims to segment long audio segments into meaningful units, providing speaker clustering, 

speaker recognition, and topic segmentation. For speaker clustering, the identity of the speakers is 

unknown, and the system provides only labels for segments of the same speaker appearing multiple 

times in one file. This is useful, e.g., for interviews in which only statements of a particular user are 

of interest to the journalist. Moreover, the human voice can contain personal attributes of unique 

pronunciation (vocal tract shape) and speaking manner (accent and rhythm). Therefore, speaker 

recognition is defined as the task of identifying persons from their voices. We approach this problem 

with an end-to-end framework for the recognition of specific speakers from a known speaker 

database. On the other hand, we investigate the speaker diarization task to label news content with 

classes that correspond to speaker identity in order to address "who spoke when". 
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Online News Classification and Clustering 

News classification targets categorizing a given text sequence with one (or multiple) pre-defined class 

label(s) describing its semantic content. To this end, we will follow recent research on cross-lingual 

representations for topic labeling across various languages, which uses deep contextualized models. 

One of our primary concerns addresses the problem of learning a shared space for different label sets 

on multilingual data. Therefore, it is crucial to focus on different shared space architectures and 

attention mechanisms to cope with multilingual datasets—moreover, online news clustering groups 

semantically similar text streams without supervision or manually assigned class IDs. Similar to the 

online classification task, we plan to automatically cluster input documents in the cross-lingual space, 

such that documents from different languages can be aggregated together according to the story topic. 

News Summarization 

This task focuses on summarizing news content using state-of-the-art abstractive neural approaches. 

The biggest challenge for this task is the presence of factual inconsistencies in the generated 

summary. Both the automatic detection and the mitigation of factual inconsistencies are open research 

problems on which we will focus. Additionally, and since current research and available models are 

mostly English-centric, we will extend our research to the multilingual and cross-lingual scenarios. 

In a parallel line of work, we are also addressing the challenging problem of end-to-end speech-to-

text summarization. This task has been seldom explored in prior work, which mostly addresses it 

using a cascade of transcription and text summarization modules. We believe an end-to-end approach 

may yield better results by avoiding error propagation and being computationally more efficient. 

At the final stage, we will evaluate our methods in the context of summarizing video audios by using 

the video teasers as the target summaries. We will compare the end-to-end speech-to-text approach 

with a cascaded model using a publicly available ASR module followed by our abstractive (text-to-

text) approach. 
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3. Scientific Approach 
This section presents an introduction to our proposed methodologies employed for this deliverable. 

The problems presented in the introduction section will be explained in detail under the following 

sub-chapters. We will give experimental results and their discussions in the next section. 

3.1. Named Entity Recognition 

For the named entity recognition (NER) task, we investigate two ideas: hierarchical NER and 

example-based NER. In the following subsections, we present a summary of these approaches. 

During the second reporting period we investigated the behavior of the proposed models in a 

multilingual scenario and their ability to zero-shot to unseen languages during training. 

Hierarchical Nested NER 

The task of recognizing entities can take different forms. We focus on the hierarchical nested 

approach, where a given sequence of words can correspond to more than one entity, e.g., “gpe” and 

“gpe → city”, with “city” being a more fine-grained entity type, with the added possibility of 

including nested entities. This subsection reports two approaches related to the task of hierarchical 

nested NER: improvements made to Marinho et al. (2019) (Stack-LSTM), and a new biaffine 

approach, heavily based upon Yu et al. (2020). 

Stack-LSTM work, proposed by Marinho et al. (2019), models hierarchical and nested entities via 

four main actions: transitions, shifts, reduction, and outs. These actions modify the system's state by 

interacting with the words in an input sentence over a series of "stacks", which model different aspects 

using LSTMs. All words are represented by concatenating their corresponding fixed-word lookup 

embedding and learned character sequence embedding representations. We propose replacing the 

original word representations by contextual embedding representations, using existing models based 

on architectures such as BERT (Devlin et al. (2019)), coupled with an extensive study of pooling 

approaches and fine-tuning strategies. The main advantage is to use more powerful pre-trained 

embedding models, which can leverage the context of a word within its sentence. Several works 

highlight the excellent performance of applying pre-trained multilingual contextual embedding to 

languages other than English. 
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Biaffine model follows the work of Yu et al. (2020). This model scores pairs of start and end tokens 

in a sentence to explore all spans so that the model can predict named entities accurately. We propose 

using a biaffine classifier model, initially capable of identifying flat and nested entities. It uses token-

level representations based on a combination of character and pre-trained contextual embeddings 

coupled with a biaffine model. This returns a score tensor of every possible class of start-end span 

combinations. It has dimensions n x n x c, where n is the number of tokens in the input, and c is the 

number of classes plus one, the no-entity class. We introduce three changes to make this approach 

capable of modeling hierarchical entities: (i) the score tensor, which is an output of the biaffine model, 

is now n x n x m, where n corresponds to the number of tokens in the input, and m corresponds to a 

span embedding dimension; (ii) we add a classifier that predicts whether a span corresponds to an 

entity or not. The intuition is that since predicting multiple labels for each span will involve evaluating 

all possible spans sequentially, skipping as many spans as possible improves performance; (iii) using 

the score tensor, we use an LSTM model to predict entities for a given span at a time, until the "end 

of the sentence" token is predicted. At each step, the LSTM model input becomes the concatenation 

of different intermediate representations. 

Example-Based NER 

Current research in text generation has shown that combining a traditional generation model with a 

k-nearest neighbors (kNN) approach improves performance (Khandelwal et al. (2020), Khandelwal 

et al. (2021)). We explore the possibility of extending these approaches to the NER task. In particular, 

for each token of the input sentence, we find the closest k tokens on a set of similar sentences retrieved 

using sentence embeddings (SBERT) (Reimers et al. (2019)). Then, we follow either a single-k 

approach, where the kNN distribution for each token is obtained from a single k value, or a multi-k 

approach, where the kNN distribution for each token is the average of the distributions obtained for 

multiple k values. The remaining steps follow the works mentioned above. 

We highlight the possibility of using this approach to leverage user feedback by continuously 

adapting the NER predictions with the data collected, avoiding re-training the model as often. We 

aim to use this approach to deal with user feedback for entity linking and the NER from speech. 
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Learning Cross-language NER 

In SELMA, one of our main objectives is to obtain good models over a large number of languages. 

Additionally, one of our major concerns is scalability when moving the models to production, which 

means that we cannot deploy one model for each of the SELMA target languages. To attain these 

objectives, we researched the possibility of having only one model for all the target languages without 

losing performance. We also wanted to know if it is possible to improve each of the languages by 

using data from other languages. 

To meet the above objectives, we researched the following approaches keeping in mind that our aim, 

to keep platform-needed resources to a minimum, is to have one model that covers all languages: 

• Training one joint model using as training data the mixture of all language datasets annotated 

with the common ontology making no explicit difference between them.  

• Introduce an additional language class, and their respective transition and reductions, on the 

stack model representing the language of the input document. 

• Use of language adapters that can be trained and injected in the model for each language as 

proposed by Neil Houlsby et al. (2019). 

In the evaluation section, we report the results of the first hypothesis above, which proved very good 

and more general than the remaining. 

3.2. Entity Linking and Cross-lingual Stream Representations 

Entity linking is the task of connecting a named entity in a document to an entry in a knowledge base 

(KB). One way to address this problem is to create a candidate set for each named entity with possible 

entities from the KB and then rank the candidates to choose the most likely entity to be linked. Our 

work follows this approach and employs a model inspired by dynamic context augmentation (DCA) 

by Yang et al. (2019), which is itself an improvement over the original model proposed by Ganea and 

Hoffmann (2017). This family of models has two main components: the pre-trained entity 

embeddings and the ranking model (based on the DCA) that uses those embeddings and scores 

candidates through a combination of independent scores. This formulation allows for an existing 
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subset of entities to be adapted or added without retraining the whole set of entities in the knowledge 

base, facilitating user feedback and stream learning scenarios. 

Our entity embeddings are bootstrapped from a frozen set of word embeddings. Following the idea 

in Yang et al. (2019), we employ Wikipedia canonical pages and hyperlinks. The original articles 

leveraged English Word2Vec (Mikolov et al. (2013)) embeddings. We extended the model to use 

multilingual word embeddings such that non-English embeddings and texts can now be used. BPEmb 

embeddings (Heinzerling & Strube (2018)) contain sub-word embeddings based on Byte-Pair 

encoding (BPE) in 275 languages, trained on Wikipedia. BPE is a compression algorithm that, in an 

NLP context, allows the representation of words by the set of most common sub-words, removing 

the need for out-of-vocabulary tokens. This ability, in conjunction with the extensive language set 

available and its improvement on performance with relation to Word2Vec, led us to use these 

embeddings. 

The ranking model DCA receives a pre-computed candidate set for each mention and yields a score 

for each candidate, choosing the highest scoring candidate as the linked entity. This score is a 

composition of independent scores. Yang et al. (2019) model considered only three scores: (i) prior 

probability, P(E|m), computed using Wikipedia hyperlink count frequency; (ii) a local 

disambiguation score that calculates an attention score between a candidate embedding and word 

embeddings surrounding the mention to assign higher importance to certain context words; (iii) a 

global entity coherence score to produce an attention score between a candidate and previously 

disambiguated entities, under the assumption that there is consistency between document mentions. 

We extend this model to consider two other scores based on entity types and mention candidate 

similarity. The former generates the cosine similarity between the predicted type embedding of a 

mention and the type embedding of a candidate. The mentioned type is inferred using a classifier 

following Cardoso et al. (2020), trained alongside DCA. The latter is an alternative way to leverage 

global coherence by comparing candidates of mentions. We compute the cosine similarity between a 

given mention’s candidate embedding and all the candidate embeddings of neighboring mentions and 

take the maximum similarity across all neighbors as the score for that candidate. 

Our learned embeddings vocabulary can consider exclusively English, German, and Portuguese 

Wikipedia pages. In a multilingual scenario, for a given entity, we will sample positive words from 
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the English Wikipedia page and hyperlinks if that entity has an English Wikipedia page. Otherwise, 

we will sample positive words from the respective language from which it was obtained, either 

German or Portuguese. To train the DCA model, we used different configurations: training on the 

English portion of the CoNLL-2003 (Tjong Kim Sang & De Meulder (2003)) NER shared task data, 

containing news stories from Reuters news agency; training on an English Wikipedia page set where 

hyperlinks are considered mentions and their linked pages are the gold entities; training on both sets 

simultaneously. 

During the second reporting period we started investigating how the previous approaches behaved 

when we extended the number of languages to a much bigger set of languages (currently 40). We 

found out that the models behave similarly when training the entity representations using these 

additional languages. Our current objective is to have a single model for EL and NER trained jointly 

or at least sharing the same base contextual model. For that purpose, we started researching the 

possibility of using the base contextual model fine-tuned on the NER data to learn the entity 

embeddings. This implies changing the Ganea model presented above to gather negative token 

embeddings from the Wikipedia multilingual dataset, posing a big optimization challenge due to the 

size of the dataset.  

To train the contextual entity embeddings, we defined the following procedure, based on the 

procedure from Ganea and Hoffmann (2017): 

1. Initialize the entity embeddings with the mean pooling of the individual token embedding of 

the entity title. 

2. Obtain a first set of entity embeddings by training the maximum margin model using the 

Wikidata data for each entity in each of the languages available: label, description, title (we 

intended to extend this with other Wikidata properties, e.g subclass of, type, etc..). For this 

we will experiment using only the CLS token, the mean pooling of the token embeddings, or 

the individual embedding of each of the tokens. The negative samples are collected by a 

random permutation of all the positive embeddings. 

3. Do the same procedure as above using the concatenation of all the Wikipedia language pages 

for each entity as positive examples. 
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4. Do the same procedure as above using as positives the Wikipedia contexts where there is a 

link to an entity. 

5. A final optional step is to further train the entity embeddings using as positives all the entities 

that co-occur as link with another entity. 

On a second phase, we will investigate if these embedding are suitable and how to use them for the 

downstream task of Entity Linking. 

In the evaluation section, we report preliminary results obtained on the quality of the entity 

embeddings. 

3.3. Story Segmentation 

Human voice has a personal identity that may offer biometric security by combining physiological 

and behavioral characteristics (Lu et al. (2017)). Driven by a great deal of potential applications in 

story segmentation, automated systems have been developed to automatically extract the different 

pieces of information conveyed in the speech signal. Hence, several tasks could be defined under the 

speaker recognition problem. They differ mainly with respect to the decision type that is required for 

each task. In speaker identification, a voice sample from an unknown speaker is compared with a set 

of labeled speaker models (Tirumala et al. (2017)). The label of the best matching speaker is taken to 

be the identified speaker. In a speaker verification task, an identity claim should be provided or 

asserted along with the voice sample (Nagrani et al. (2020)). The unknown voice sample is compared 

only with the speaker model whose label corresponds to the identity claim.  

A more challenging task is generally referred to as speaker diarization which is used to answer the 

question of "who spoke when?” (Wang et al. (2018)). Throughout the diarization process, the audio 

data would be divided and clustered into groups of speech segments with the same speaker 

identity/label. A complicating factor for this task is that the input news stream may contain speech 

from more than one speaker. Thus, speaker diarization is regarded as the combination of speaker 

segmentation and speaker clustering. The first aims at finding speaker change points in an audio 

stream and the second aims at grouping together speech segments on the basis of speaker 

characteristics. 
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In our initial experiments, we only investigate recognition tasks. Specifically, we focus on text-

independent speaker recognition when the identity of the speaker is based on how the speech is 

spoken, not necessarily in what is being said. Typically, such a system operates on unconstrained 

speech utterances, which are converted into vectors of fixed length, called speaker embeddings. 

Recently, x-vector-based architectures attained state-of-the-art results on speaker-related tasks 

(Snyder et al. (2018a)). The development of time-delayed neural networks (TDNNs) topology is still 

an active research area in speech processing. The preferred approach is to train neural networks on 

the speaker classification task. After the model convergence, low-dimensional embeddings are 

extracted from the bottleneck layer before the soft-max output. Speaker recognition can be completed 

by comparing the two embeddings over a cosine distance measurement to accept or reject a hypothesis 

that both samples contain the same speaker. Additional complex backend scoring can also be utilized 

for this task, such as probabilistic linear discriminant analysis (PLDA) (Ioffe (2006)). 
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Figure 1 Network topology of the ECAPA-TDNN (Desplanques et al. 2020) embedding extractor where BN 
stands for batch normalization and the non-linearities are rectified linear units (ReLU) 

The statistics pooling layer in the x-vector system can map the variable-length input into a fixed-

length representation by gathering temporal statistics of hidden layer activations. Okabe et al. (2018) 

introduced a self-attention system to the statistical pooling, focusing more on essential frames. This 

model is then improved by adding elements of ResNet architecture (He et al. (2016)). The residual 

connections of ResNet between the frame-level layers can enhance the x-vector embeddings. 

Moreover, these residual connections improve the backpropagation in terms of faster convergence 

and prevent the vanishing gradient problem (Snyder et al. (2018b)). 

In this deliverable, we follow ECAPA-TDNN (Desplanques et al. (2020)) architecture which can 

eliminate some limitations of the x-vector embeddings. This new model extends the temporal 

attention mechanism even further to the channel dimension. It enables the network to focus more on 

speaker characteristics that do not activate on identical or similar time instances. An overview of the 

complete architecture is given by Figure 1 where k and d represent kernel size and dilation spacing 

of the network layers. C and T correspond to the channel and temporal dimension of the intermediate 

feature maps, respectively, and S is the number of training speakers/users. 

Channel- and context-dependent attention mechanism are implemented inside the pooling layer, 

which allows the network to attend different frames per channel. The temporal frame context in the 

original x-vector model is limited to 15 frames (Garcia-Romero et al. (2019)). As the model benefits 

from a broader temporal context, it is possible to rescale the frame-level features given global 

properties of the input sample, similar to the global context in the attention modules. Therefore, 1-D 

squeeze-excitation (SE) blocks (Hu et al. (2018)) rescale the channels of frame-level feature maps to 

insert global context information inside the locally operating convolutional blocks. 

Regular residual blocks (ResBlocks) make it easy to incorporate advancements concerning computer 

vision architecture (He et al. (2016)). The recent Res2Net module enhances the central convolutional 

layer such that it can process multi-scale features by constructing hierarchical residual-like 

connections within (Gao et al. (2019a)). Thus, integrating 1-D SE-Res2Block improves performance 

while simultaneously reducing the total parameter count by hierarchically used grouped convolutions. 
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At the last stage, multi-layer feature aggregation (MFA) merges complementary information before 

the statistics pooling by concatenating the final frame-level feature map with intermediate feature 

maps of preceding layers (Gao et al. (2019b)). The overall network is trained by optimizing the AAM-

soft-max (Deng et al. (2019)) loss on the speaker labels of the training data. The AAM-soft-max is 

an enhancement compared to the traditional soft-max loss in the context of fine-grained classification 

problems. It directly optimizes the cosine distance between the speaker embeddings. In this way, 

complex scoring backends, like PLDA, can be avoided. 

3.4. Online News Classification 

For the classification of online news, Priberam has worked with the taxonomy established by the 

International Press Telecommunications Council (IPTC), a consortium of the world’s major news 

agencies. The IPTC Subject Codes vocabulary and the succeeding Media Topics vocabulary establish 

a hierarchical system of labels to describe the topics covered by any media document. In our 

experiments, the subject codes vocabulary has been used to classify news articles, and it covers 1404 

labels of topics distributed over a hierarchy of three layers. Label names and descriptions are included 

in seven languages (English, German, French, Portuguese, Spanish, Italian, and Japanese). 

Using a dataset of Portuguese news provided by the Lusa News Agency1, Priberam has trained models 

for news classification in this taxonomy. The dataset includes over 700,000 news articles in 

Portuguese for training and testing and an additional 1,000 articles in Spanish and English, each 

provides a general sense of the cross-lingual performance of the model. 

An additional dataset of news articles was acquired from the STT Finnish News Agency2, the dataset 

includes over 900,000 news articles in Finnish, labelled with IPTC labels. We use this dataset along 

the Lusa dataset to train our models in a broader topic space, and to help multilingual models not 

overfit to a single language. As a Uralic language, Finnish is lexically very distant to Portuguese. 

 

1 Lusa Agency of Portugal: https://www.lusa.pt/lusanews 

2 STT Finnish News Agency: https://stt.fi/en/ 
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Previous approaches to this task by Priberam used a model described in report D5.1 of the SUMMA 

project3, which used convolutional neural networks (CNNs) to aggregate word embeddings to make 

a final decision through a fully connected layer. Separate versions of this model made decisions at 

each step of the label hierarchy. For the model to cover languages outside the training set, the FastText 

(Bojanowski et al. (2017)) multilingual word embeddings were used. The FastText word embeddings 

were initially published by Facebook research as separate sets of monolingual embeddings for 89 

languages, these were later aligned by researchers at Babylon Health into a single set of multilingual 

embeddings. This allows the model to infer on zero-shot languages. These embedding vectors were 

not fine-tuned in training, which avoids corrupting the word embeddings of languages not seen during 

training. 

One of the main focuses of the news classification task is to improve the performance of Priberam’s 

news classifier. Firstly, by finding a lighter model that can predict the entire label hierarchy in a single 

forward pass. And secondly, by leveraging the new developments in NLP model architectures, 

namely models such as bidirectional encoder representations from transformers (BERT) (Devlin et 

al. (2019)), that can be pre-trained in a multilingual context and then fine-tuned for the specific task 

using the monolingual dataset. 

Chalkidis et al. (2020) performed a thorough survey on the hierarchical multi-label classification of 

text and showed the outstanding performance of transformer type models. A significant drawback of 

these models is the limited input size that requires some news articles to be shortened. 

 

3 SUMMA Deliverable D5.1: http://summa-project.eu/wp-content/uploads/2017/08/SUMMA_D51_InitialNLU.pdf  
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Figure 2 Architecture of sentence embeddings-based classification models where the novel sentence-level 
attention layer can take queries from various sources, and outputs an embedding 

Our first proposed model uses multilingual sentence embeddings produced by a DistilUSE (Reimers 

et al. (2019)) model to represent an entire news article as a sequence of sentence embeddings. 

DistilUSE is a transformer-type model trained as a more lightweight multilingual counterpart to a 

monolingual teacher model (using knowledge distillation). This model is trained to generate sentence 

embeddings in a shared multilingual space. In our new proposed architecture, an attention layer is 

used to estimate the importance of each sentence embedding and aggregates them for a final decision 

in a fully connected layer. We further expanded on this practice by experimenting with separate 

attention queries for each label and particular attention queries for each hierarchy depth. The general 

architecture of these models is shown in Figure 2. 

Our second proposed model is based on an attention-aware model called AttentionXML (You et al. 

(2019)), which has shown remarkable performance in use-cases of extreme multi-label classification. 

AttentionXML works by allowing each candidate label to query directly on the word embeddings. 
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The result of this attention layer is fed to a fully connected binary classifier that is shared between all 

labels. 

 

Figure 3 Architecture overview of mBERT and AttentionXML hybrid models,  
the top dashed box shows the architecture of a stock AttentionXML 

Each label learns its own query, which finds the most relevant words. The final classification layer is 

trained on identifying if the document has the most attention on the words that are relevant to its 

topics. The major drawback of this model is its non-reliance on pre-training and the lack of 

multilingual support. We explore two modifications to this model, both aimed at making it 

multilingual. Firstly, we experiment replacing the word embeddings with pre-trained multilingual 

word embeddings, and we chose the BPEmb (Heinzerling & Strube (2018)) embeddings for this. 
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These are subword embeddings trained with byte pair encoding that outperform FastText in some 

scenarios. The authors have open-sourced BPEmb embeddings and tokenizers for 275 languages, 

along with a multilingual version that covers all 275 languages. Secondly, we try replacing the entire 

embedding layer with a transformer model. For this, we used a multilingual BERT to provide 

contextual embeddings for each token that serves as input to AttentionXML. This allows our 

embeddings to be more contextualized than what can be achieved with the default biLSTM and will 

enable us to partially finetune the mBERT model, improving its accuracy for the task without 

sacrificing the multilingual performance. We later run similar experiments with a pretrained 

multilingual Roberta-Large model (Liu et al. (2019)), which has shown great potential for 

multilingual NLP tasks. The architecture of these latter models is shown in Figure 3. 

Improving Explainability of AttentionXML-Based Models 

When initially proposing the architecture of AttentionXML, the original authors boast about how the 

model provides a simple explanation for model decisions since it has a single Token to Label attention 

layer. And that the attention values from this layer provide a score of how relevant each word token 

is for each label decision. 

In our analysis of these attention distributions, we found many examples where the attention peaks 

were not on the relevant tokens, but instead other tokens in the neighborhood of these relevant tokens. 

We speculate that the BiLSTM of the model can aggregate information in the contextual embeddings 

near to the relevant text spans, and that some arbitrary embedding might be sufficient for the model 

to make a decision. To minimize this effect, we experiment with splitting the BiLSTM, into a separate 

Forward-LSTM and Backward-LSTM. The reasoning for this is that, since the LSTMs can 

accumulate relevant information onto arbitrary tokens in the neighborhood of the relevant sections, 

and that these tokens will later be favored by the attention layer, using separate LSTMs with different 

directions will restrict the positions at which these tokens will be found. With the Forward-LSTM, 

we can guarantee that the relevant information can only be accumulated on a token at the end of, or 

to the right of, the relevant section. Similarly, with the Backward-LSTM, we can guarantee that the 

relevant information can only be accumulated on a token at the start of, or to the left of, the relevant 

section. This way it is possible to find relevant spans delimited by the high attention tokens of these 

two models. 
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We also experimented with the attention layer of the mBert and AttentionXML hybrid model. Here 

we found that the attention weights were seemingly very random. Given the size of the transformer-

type models, it is perhaps not valid to think of the output embeddings as contextual embeddings of 

the corresponding input tokens, in the same way that the output embedding of the [CLS] token is used 

as an embedding of the entire document. 

Experiments with ICD coding 

Multi-label classification of medical documents regarding diagnosis and procedures described within 

medical records is a popular task and benchmark for the models described here, due to its necessity 

and applicability in hospitals. The International Classification of Diseases (ICD)4 is a globally used 

labelling schema, maintained by the World Health Organization (WHO). Due to the very large label 

space of ICD, and its somewhat hierarchical nature, ICD classification of medical documents is a 

similar task to IPTC classification. We experiment our models on the widely used MIMIC dataset 

(Johnson et al. (2016)), which is labelled according to the ICD9 version of the classification standard.  

3.5. Online News Clustering 

Our primary focus for the news clustering task is to build an online multilingual news clustering 

system that could process and organize articles from most SELMA languages5. In this task, a 

continuous stream of incoming news articles must be organized into clusters of events called stories. 

Miranda et al. (2018) approached this problem by processing the news documents stream into 

monolingual and cross-lingual clusters. Each document is first associated with a monolingual cluster 

using the term frequency-inverse document frequency (TF-IDF) sub-vectors of words, lemmas, and 

named entities. Then, cross-lingual clusters are computed by linking different monolingual clusters 

through cross-lingual word embeddings weighed with TF-IDF. While this approach obtained good 

results at the monolingual level, it had the following drawbacks: the cross-lingual word embeddings 

 

4 International classification of diseases (ICD): https://www.who.int/classifications/classification-of-diseases 

5 SELMA platform target languages: Albanian, Arabic, Bulgarian, Chinese, Croatian, English, French, German, Greek, 

Hindi, Indonesian, Macedonian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Turkish, Ukrainian, 

Urdu. 
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did not take their neighboring words (and thus, the context of the sentence) into account, and the 

monolingual step required training a separate model for each language as well as extracting the 

entities from the given text, a task that can be problematic for low-resource languages. 

For our approach (Santos et al. (2022)), we developed a system that can cluster news articles of any 

language without depending on language-specific features while being supported by pre-trained 

multilingual contextual embeddings. For a given document, our system is composed of four main 

steps: (i) obtaining its document representations, (ii) finding the best-ranked cluster for that 

document, (iii) deciding if the document accepts the best-ranked cluster and enters it, and (iv) merging 

clusters that pertain to the same story. A representation of our clustering system is depicted in the 

following figure. 

 

 

Figure 4 Representation of the news clustering system’s ranking, acceptance and merge steps 
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To represent news documents and clusters, we focused our efforts on composing a contextual 

representation in a set of dense vectors. To that end, similarly to the news classification task, we use 

DistilUSE, a pre-trained model that aligns text at the sentence level into a shared semantic space, 

resulting in similar sentences being closely mapped in the vector space regardless of their language. 

This model supports over 50 languages and does not require the specification of the input language, 

providing a vectorial representation for the documents that can then be used to inference and group 

similar news articles. This is a significant change from previous approaches, as contextual 

information was not taken into account at a cross-lingual level in news clustering state-of-the-art 

(Miranda et al. (2018), Linger et al. (2020)). Additionally, this approach simplifies the clustering task 

by using a single cross-lingual representation for the documents, thus allowing for a fully dense 

clustering space. 

Documents are comprised of two components: a set of dense vectors corresponding to a contextual 

representation of the document, and a temporal representation ( ). For each document, contains 

three dense representations: corresponds to its body and title, to its first paragraph, and to its 

first paragraph and title. Each of the output vector representations is obtained by mean pooling. 

Regarding the temporal representation, we follow previous approaches (Miranda et al. (2018)) and 

expose the temporal representation  of a document as the value of its timestamp in days. 

In order to find the best-ranked cluster for a given document, we trained a Rank-SVM model, which 

is a variant of the support vector machine (SVM) algorithm, using a news clustering dataset (Rupnik 

et al. (2016)) with dense and temporal features. Given the training partition of the dataset, each 

document generates a positive example corresponding to its gold cluster, and 20 negative examples 

for the 20 best-ranked clusters that are not the gold cluster.  

These examples are then used in the Rank-SVM to obtain a set of fixed weights for each of the 

features. Temporal features are computed through the Gaussian similarity between two timestamps 

(represented by the function, and the dense features are obtained through the computation of 

the cosine similarity ( ). The ranking score of a cluster c given a document d and the ranking 

model's fixed weights u is formalized as follows: 
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After computing the best-ranked cluster c for a given document d, a trained SVM model, which we 

refer to as the acceptance model, determines if the document enters the cluster by computing its 

acceptance score, represented as follows (v corresponds to the acceptance model's weights): 

 

Finally, after receiving a new document, a cluster verifies its similarity with each cluster in the cluster 

pool using the ranking model described above. Each candidate cluster is then evaluated by a third 

SVM model, which we call cluster merge model, and the documents from each cluster that is 

evaluated as a positive match are inserted into the source cluster. The intuition for this model is to 

find separate clusters that pertain to the same story and subsequently merge them. This may happen 

throughout the clustering process; since few documents related to a given story have entered the 

system, the acceptance model may mistakenly assign separate clusters to those documents initially. 

As more relevant documents enter the system, those clusters may end up in similar points in the vector 

space and thus should be merged. 

3.6. News Summarization 

Monolingual Text Summarization 

Text summarization aims at producing a short text segment that preserves the essential information 

conveyed by a longer source document. The approaches for automatic summarization can be divided 

into two categories: extractive and abstractive methods. The former address the problem by 

identifying salient parts of the source document and directly copying those to the summary (e.g., 
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Kupiec et al. (1995), Dorr et al. (2003), Nallapati et al. (2017)). The latter produce the summary by 

generating new text that paraphrases the most relevant parts of the source document (e.g., See et al. 

(2017), Guo et al. (2018), Lewis et al. (2020)). 

In SELMA, we will focus on summarizing video transcriptions using current neural approaches. 

Since extractive methods produce weak summaries over automatic transcriptions (given the low 

quality of the generated sentence boundaries), we shift toward abstractive summarization methods. 

Nonetheless, abstractive summaries often contain factual inconsistencies that hamper the adoption of 

these approaches in practical applications (Kryściński et al. (2019a)). For this reason, our main goal 

is to develop techniques to enhance the factual consistency of the generated summaries. 

Our work (Pernes et al. (2022)) builds upon the state-of-the-art methodologies for abstractive 

summarization, namely those based on transformer sequence-to-sequence architectures, like BART 

(Lewis et al. (2020)), a pre-trained encoder-decoder transformer that can be finetuned in a wide range 

of text generation tasks, including summarization. At the same time, automatic evaluation metrics 

such as CTC scores (Deng et al. (2021)) have been recently proposed that exhibit a higher correlation 

with human judgments than traditional lexical-overlap metrics such as ROUGE. In our work, we 

close the loop by leveraging the recent advances in summarization metrics to create quality-aware 

abstractive summarizers. Namely, we proposed an energy-based model that learns to re-rank 

summaries according to one or a combination of these metrics. An overview of the proposed 

framework is presented in Figure 5. As suggested by the picture, the energy-based re-ranking model 

(EBR) is presented with a set of candidate summaries for a given source document and assigns a 

score to each candidate. The EBR is trained to mimic the ranking induced by a pre-specified gold-

metric, so that the scores it provides should indicate which candidate is the best one according to that 

metric. We experiment using several metrics to train our energy-based re-ranker and show that it 

consistently improves the scores achieved by the predicted summaries. Nonetheless, human 

evaluation results show that the re-ranking approach should be used with care for highly abstractive 

summaries, as the available metrics are sometimes not sufficiently reliable for this purpose. 
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Figure 5 Representation of the proposed energy-based re-ranking approach for abstractive summarization. 

Cross-lingual Text Summarization 

The previous work has only focused on abstractive summarization of English documents. Multi-

lingual resources for summarization are scarce, not only regarding the availability of trained models, 

but also in terms of public datasets and evaluation metrics. Moreover, SELMA proposes to address 

multilingual data streams and therefore following solely monolingual approaches for summarization 

would not be appropriate. Hence, we are addressing the challenging cross-lingual summarization 

problem, in which a summary in a given target language is generated from a source document in a 

different language. Currently available datasets for cross-lingual summarization are either English-

centric (Nguyen and Daumé III (2019)) or were built by pairing documents from multi-lingual 

datasets using automatic similarity metrics (Hasan et al. (2021)), a process that inevitably leads to 

many false pairs. Thus, as a starting point, we have collected and curated a large-scale non-English-

centric cross-lingual dataset for abstractive summarization with high-quality parallel. It contains 

675k+ articles scraped from the EuroNews websites. The articles are written in 12 languages and the 

dataset includes document-summary pairs for all possible 144 source-target language pairs. This 

dataset is inherently cross-lingual since each article webpage contains links for the same article 

written in other languages. We are currently using this dataset to fine-tune and evaluate large multi-

lingual language models, like mBART (Liu et al. (2020)) or mT5 (Xue et al. (2021)) on this task. As 

future work, we will research improved training strategies to enhance the performance of these 

models, mitigating hallucinations and promoting the generation of more relevant summaries.  
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Speech Summarization 

This task is conceptually identical to text summarization except from the input modality, which is 

now raw speech instead of text. In the context of SELMA, speech summarization plays a central role 

as our efforts on abstractive summarization have the ultimate purpose of summarizing videos. 

This task is traditionally divided into two subtasks addressed independently: automatic speech 

recognition (ASR), which generates the audio transcripts, and text summarization, that produces the 

summary given the transcript. However, ASR step leads to error propagation and to loss of the 

information provided by the speaker intonation. To tackle these problems, we are currently 

developing an abstractive summarization system capable of performing end-to-end speech-to-text 

summarization, i.e., without an intermediate transcription step. 

Our approach uses a pre-trained wav2vec 2.0 model (Baevski et al. (2020)) to extract audio 

embeddings from the raw waveform and a transformer decoder to generate the summary text. This 

decoder is taken from a transformer that had previously been trained on the task of text-to-text 

summarization, so the decoder is expecting to receive textual token representations rather than the 

audio embeddings provided by wav2vec. Thus, we train a cross-modality adapter on the task of 

converting sequences of audio embeddings into the corresponding sequences of textual embeddings. 

Specifically, given an audio and the corresponding transcript, we extract the embeddings from the 

audio using the word2vec model and the corresponding textual embeddings using the encoder of the 

transformer trained for textual summarization. Then, we use these pairs of audio and textual 

embedding sequences to train the cross-modality adapter. By cascading the wav2vec encoder, the 

cross-modality adapter, and the transformer decoder, we obtain an end-to-end model for speech 

summarization. We are currently testing different architectures (LSTM-based and transformer-based) 

for the cross-modality adapter, as well as different training strategies. Data-wise, we are using French 

news audios extracted from Deutsche Welle and EuroNews websites and the corresponding teaser 

texts as the gold summaries. 

We remark that surpassing the performance of the cascaded (ASR + text summarization) approach 

will be difficult given the relatively limited amount of data available Nonetheless, we intend to 

establish a first end-to-end baseline for this task and to narrow the performance gap to the cascaded 

model as much as possible. 
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4. Experimental Results 
This section includes the experimental analysis of the previously defined problems, alongside their 

discussions, and our future plans for the rest of the project. Sub-section titles are arranged in 

accordance with the previous section.  

4.1. Named Entity Recognition 

Hierarchical Nested NER 

We report named entity recognition and classification (NERC) F1 scores obtained for all entities. For 

each level of the hierarchy, we utilize two internal datasets related to media content: i) MediaPT, 

containing 42,000 training examples in Portuguese; and ii) MediaDE, containing 85,000 training 

examples in German. Both datasets have the same set of 61 labels, including hierarchy levels, e.g., 

“gpe → administrative_region → municipality”, where “gpe” is the top-level (L0), 

“administrative_region” corresponds to L1, and “municipality” to L2. The obtained results can be 

seen in Table 1. It is possible to observe that both models achieve similar scores for both languages, 

with a slight advantage of the stack-LSTM model in MediaPT and the biaffine model in MediaDE. 

When comparing these models in terms of computational performance, the biaffine approach offers 

a clear advantage when decoding on CPU or when the sentences are short, with stack-LSTM 

performing similarly on GPU and slightly better for longer sentences. 

Approaches \ Datasets MediaPT MediaDE 

Development Set - NERC F1 - ALL (L0 / L1 / L2) 

Stack-LSTM 85.8 (86.5 / 85.4 / 64.5) 80.8 (80.5 / 82.4 / 59.2) 

Biaffine 85.6 (86.3 / 85.2 / 64.4) 81.0 (80.2 / 83.4 / 58.9) 

Test Set - NERC F1 - ALL (L0 / L1 / L2) 

Stack-LSTM 85.2 (86.0 / 84.6 / 42.0) 81.7 (81.7 / 82.8 / 53.4) 

Biaffine 84.7 (85.7 / 84.0 / 48.4)  81.8 (81.8 / 82.7 / 55.6) 

Table 1 Stack-LSTM and biaffine results for MediaPT and MediaDE development and test sets 
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The results presented in Table 1 highlight the previously mentioned advantage of working with 

pretrained multilingual contextual embedding models, which allows us to train models for different 

languages, as we did for MediaDE and MediaPT, and to train a single model for several languages. 

This allowed us to participate in the SlavNER shared task, part of the 8th Balto-Slavic NLP, where 

our biaffine approach was able to outperform all the other submissions for the NER subtask (Ferreira 

et al. (2021), Piskorski et al. (2021)), which included nested non-hierarchical entities for six different 

languages. 

Cross-lingual Hierarchical Nested NER 

In the second reporting period, datasets for additional languages became available, allowing us to 

further investigate the multilingual capacities of our models. Currently, the project has created NER 

datasets for English, French, German, Latvian, Spanish, and Portuguese. Additionally, smaller 

datasets to evaluate language transfer are also available for Ukrainian, Dutch, and Turkish. Table 2 

contains the description of the datasets annotated with our ontology as described in D6.1 - Initial Data 

Management Plan. The number of annotations shown in the table are counted one for each level of 

the ontology so the number of different annotated text spans is much smaller than the number 

presented. English, French, German, and Spanish have a very good coverage, Latvian proved to have 

sufficient training data, and Dutch, Ukrainian, and Turkish are used only for evaluation proposes.  

Language #documents #tokens #annotations* 

English 4500 5584365 3103202 

French 3003 3086488 1771902 

German 3122 2934042 1625036 

Latvian 741 573731 321594 

Spanish 2576 2855692 1556536 

Portuguese 3199 2317747 1283964 

Dutch 50 41193 22966 

Ukrainian 211 160163 90865 

Turkish 100 70815 40967 
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Table 2 Multilingual NER datasets, *number of annotations counting with the hierarchy 

In order to compare the multilingual model performance against the monolingual baseline, we 

retrained all models using xml-roberta-base, except for French where we kept using camembert-base. 

This option permits verifying whether the multilingual model would outperform a good pure 

monolingual model. All the models were trained using the stack-LSTM approach with the hyper-

parameters selected in our initial experiments. The monolingual results are presented in Table 3, we 

report F1 values for each of the ontology levels and a global F1 over the complete hierarchy. The 

global F1 includes the detection of the modifier tags (e.g. nominal, function and relation), which 

make this dataset much harder than other datasets publicly available. 

Language 
F1 

All L1 L2 L3 

English 81.0 82.1 79.7 64.4 

French* 85.7 87.2 83.9 0.77 

German 82.2 81.9 84.0 71.5 

Latvian 84.2 85.9 82.4 51.1 

Spanish 83.5 85.4 81.0 54.5 

Portuguese 84.4 85.5 83.4 50.4 

Table 3 Results on test sets training monolingual. *was trained using camembert instead xlm-roberta-base 

For training the multilingual model, we selected English, French, German, Latvian, Portuguese, and 

Spanish, because they have a good amount of training data. Table 4 reports the F1 values obtained 

when training the stack-LSTM model with the same hyper-parameters as in the monolingual setting. 

In this experiment we did not use any artifact to distinguish the languages when training or testing, 

because this is the simplest, less costly in resources and the most language-independent of the 

approaches that we researched. Table 4 shows that by training with all languages together we achieve 

robust improvements in most of the languages except for French, where in the monolingual setting 
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we used a base monolingual model (camembert-base). Although the drop of 0.6 is significant, it is 

not enough to justify the overhead of using a different model in a production scenario. 

Language 

 F1 

All Diff to 
monolingual L1 L2 L3 

English 81.7 +0.7 82.5 80.8 64.1 

French 85.1 -0.6 86,4 83.4 80.9 

German 82.2 +0.0 81.7 83.4 72.3 

Latvian 85.2 +1.0 86.0 84.6 75.0 

Spanish 84.4 +0.9 86.1 82.3 59.3 

Portuguese 85.1 +0.7 85.9 84.3 51.8 

Table 4 Results on test sets training multilingual.  

We evaluated our model zero-shot capabilities on languages present in the base model but for which 

we did not have NER training data. Surprisingly and against our best expectations, the multilingual 

model performs very well on unseen languages. To evaluate the zero-shot setting we asked the 

annotators to correct, remove, and add to the annotations proposed by the multilingual model. We are 

aware that this procedure will impose a bias on the annotators leading them to probably keep the 

annotations of the model but the cost and feasibility of the task imposes a pragmatic approach. Using 

those corrected datasets, we evaluated F1 results of the model when seeing the corrected data. Table 

5 shows F1 results on the evaluation datasets for Dutch, Ukrainian, and Turkish showing that the 

annotators did not change much of the annotations proposed by the model for Dutch and Ukrainian. 

Turkish results have a considerable drop when comparing with the other two languages. This can be 

justified either by: the quality of the base model (xlm-roberta-base) for Turkish; a real difference in 

the language itself; or a different criterion was used by the Turkish annotator. If we arrive to the 

conclusion that the annotation is sound then we will extend the Turkish dataset and include it in the 

training data. To further validate these results, we will ask Priberam linguists team to validate each 

of these datasets with the annotators, making sure that the applied criteria were the same between 

these annotators and the original guidelines used for the other languages. 
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Language 
F1 

All L1 L2 L3 

Dutch 91.4 89.8 93.5 100 

Ukrainian 90.8 88.1 94.5 100 

Turkish 74.6 71.9 79.9 33.3 

Table 5 Zero-shot results after correcting the annotations predicted by the multilingual model by human 
annotators 

Lastly, on table 6 we present the aggregated F1 values with their support on the test dataset for each 

class on the ontology. 

Class Support Precision Recall F1 
animal 31 0.5588 0.6129 0.5846 
currencies 409 0.9500 0.9756 0.9626 
disciplines 127 0.5938 0.5984 0.5961 
event 1599 0.7642 0.7073 0.7347 
event->festivity 87 0.8144 0.9080 0.8587 
event->happening 50 0.8049 0.6600 0.7253 
event->organized_event 869 0.7908 0.7089 0.7476 
facility 684 0.7147 0.6667 0.6899 
gpe 8659 0.8820 0.9210 0.9011 
gpe->address 86 0.6500 0.7558 0.6989 
gpe->administrative_region 1494 0.7221 0.7289 0.7255 
gpe->administrative_region->municipality 65 0.4921 0.4769 0.4844 
gpe->administrative_region->parish 48 0.6970 0.4792 0.5679 
gpe->city 2257 0.7613 0.8520 0.8041 
gpe->continent 298 0.7975 0.8591 0.8271 
gpe->country 4199 0.9208 0.9586 0.9393 
gpe->non_administrative_region 498 0.5365 0.4137 0.4671 
gpe->union_of_countries 100 0.8990 0.8900 0.8945 
human_group 536 0.6115 0.4552 0.5219 
human_group->ethnicity 67 0.6735 0.4925 0.5690 
human_group->religion 77 0.7083 0.8831 0.7861 
human_work 1116 0.7137 0.6478 0.6792 
internet_address 193 0.8585 0.9119 0.8844 
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internet_address->email 14 0.8750 1.0000 0.9333 
internet_address->url 80 0.7500 0.8250 0.7857 
location 417 0.7419 0.7098 0.7255 
location->astronomical_object 83 0.9067 0.8193 0.8608 
location->geographical_feature 99 0.6893 0.7172 0.7030 
location->river 63 0.7800 0.6190 0.6903 
location->sea/ocean 34 0.8286 0.8529 0.8406 
mod-collective 496 0.5718 0.4819 0.5230 
mod-function 1190 0.7974 0.8832 0.8381 
mod-negation 6 0.0000 0.0000 0.0000 
mod-nominal 3954 0.6746 0.6396 0.6566 
mod-relation 2449 0.8660 0.9212 0.8928 
mod-sentiment_negative 10 0.8000 0.4000 0.5333 
mod-sentiment_positive 6 0.0000 0.0000 0.0000 
number 45 0.7381 0.6889 0.7126 
number->license_plate 5 0.0000 0.0000 0.0000 
number->telephone 40 0.7381 0.7750 0.7561 
organization 9431 0.8397 0.8657 0.8525 
organization->commercial_company 2323 0.7506 0.7891 0.7694 
organization->commercial_company->brand 890 0.6762 0.6640 0.6701 
organization->cultural_institution 32 0.4865 0.5625 0.5217 
organization->education_institution 139 0.7325 0.8273 0.7770 
organization->educational_institution 160 0.6966 0.6312 0.6623 
organization->governmental_institution 2348 0.8176 0.8113 0.8145 
organization->healthcare_institution 89 0.7100 0.7978 0.7513 
organization->intergovernmental_organization 98 0.9255 0.8878 0.9062 
organization->media 1562 0.8440 0.8867 0.8648 
organization->non_governmental_organization 912 0.6660 0.7632 0.7113 
organization->political_organization 396 0.8620 0.8359 0.8487 
organization->religious_organization 4 0.5000 0.5000 0.5000 
organization->sports_organization 1701 0.8418 0.8601 0.8508 
other 725 0.6624 0.5683 0.6117 
pathology 671 0.8967 0.9314 0.9137 
pathology->disease 434 0.9057 0.9516 0.9281 
pathology->pathogen 242 0.8659 0.8802 0.8730 
people 11937 0.8889 0.9109 0.8998 
people->alias 149 0.7857 0.4430 0.5665 
people->job 3211 0.7494 0.7991 0.7735 
quantity 2555 0.9128 0.9346 0.9236 
quantity->age 652 0.9109 0.9095 0.9102 
quantity->currency 660 0.9207 0.9682 0.9439 
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quantity->measure 349 0.8015 0.8911 0.8440 
quantity->percentage 872 0.9479 0.9599 0.9538 
quantity->temperature 47 0.8125 0.8298 0.8211 
temporal_expression 4725 0.7821 0.8167 0.7990 
temporal_expression->date 1909 0.9177 0.9466 0.9319 
temporal_expression->datehour 185 0.8870 0.8486 0.8674 
temporal_expression->frequency 142 0.6757 0.7042 0.6897 
temporal_expression->hour 372 0.9096 0.9462 0.9275 
temporal_expression->period 1116 0.6403 0.6747 0.6571 
temporal_expression->time 1897 0.7110 0.7612 0.7352 
time 1689 0.7824 0.7981 0.7902 
time->date 680 0.9137 0.9338 0.9236 
time->datehour 2 0.0000 0.0000 0.0000 
time->frequency 43 0.6364 0.4884 0.5526 
time->hour 154 0.8805 0.9091 0.8946 
time->period 323 0.5851 0.7028 0.6385 

Table 6 Full NER results for all languages for each ontology level 

 

 

Example-Based NER 

The results of example-based NER can be seen in Table 2, where we show the performance for both 

single-k and multi-k, for 7 datasets, including different domains, number of training examples, and 

number of labels. We perform hyperparameter tuning for each dataset using its development set. Few-

NERD is the dataset that is more positively impacted by this approach. We hypothesize this could be 

due to the fact that this dataset is the only one that uses an IO-encoding, which could make it simpler 

to retrieve the correct tag, as it has to match only the I tag and not the B/I-tags.  
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Approach \ 
Dataset 

Few- 
NERD 

Onto 
Notes 

Co 
NLL WNUT MIT-R MIT-M ATIS Avg 

Domain Generic Generic News Soc. Media Reviews Reviews Dialogue - 

Trn. Examples 131,000 60,000 14,000 3,400 6,900* 6,700* 6,500 - 

# of Labels 66 18 4 6 8 12 68 - 

Development Set - NERC F1 

Class. Model 68.31 88.26 95.86 64.75 81.96 73.43 98.19 81.54 

+ single-k 68.64 88.5 95.86 64.62 82.02 73.61 98.39 81.66 

+ multi-k 68.75 88.53 95.87 64.74 81.9 73.6 98.33 81.67 

Test Set - NERC F1 

Class. Model 67.83 90.11 92.28 57.53 80.05 71.22 95.88 79.27 

+ single-k 68.18 90.04 92.35 57.61 80.06 71.26 95.86 79.34 

+ multi-k 68.23 90.08 92.35 57.41 80.22 71.31 95.86 79.35 

Table 7 Example-based NER approach results with single k and multi k for different datasets 
 (*original training data was split into training/validation splits) 

There are cases where development set improvements do not result in test set improvements 

(OntoNotes and ATIS), or where the improvements in the test set are rather small (remaining 

datasets). Regarding the possibility of using this approach as a way of incorporating user feedback, 

we report an experiment where we plot the performance of the linear classifier, the performance of 

the linear classifier plus kNN using all the available data, and the previous best linear classifier at a 

certain point plus kNN using the available data (i.e., at point 0.8 we interpolate the predictions made 

by a linear classifier trained on 60% of the training data, leveraging 80% of the training data as support 

data). As we can observe in Figure 5, the more support data available for the Few-NERD dataset, the 

clearer the benefits of using the kNN approach. In particular, it is also possible to observe the slight 

benefit from continuously collecting data (e.g., by comparing the point 0.8 of the line “Linear 

Classifier” and the point 1.0 of the line “Previous Linear Classifier + kNN”, which only differ in the 

amount of available support data). 
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Figure 6 Impact of increasing support data on example-based NER for the FewNERD dataset 

4.2. Entity Linking and Cross-lingual Stream Representations 

We compare Yang et al. (2019) DCA model with our extended version using multilingual 

embeddings. We report the in-knowledge-based accuracy (i.e., accuracy disregarding predictions that 

do not exist in the knowledge base) for several datasets: (i) the English CoNLL 2003 shared task data, 

containing one development set (Aida-A) and a test set (Aida-B) with news stories from Reuters; (ii) 

WNED, a collection of English datasets containing news reports and newswire from various agencies 

(MSNBC, ACE2004, and AQUAINT) or varied English texts such as web pages or Wikipedia pages 

(CLUEWEB, WIKIPEDIA); (iii) sVoXel (Rosales-Méndez et al. (2018)), a collection of 15 manually 

annotated news articles, each available in 5 different languages. 

Table 3 shows improvements across CoNLL for our base English-only model, but performance on 

the WNED datasets does not always improve, where the model achieves lower scores, particularly in 

the CLUEWEB and WIKIPEDIA datasets that are not news related. 
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Model Aida-A Aida-B MSNBC AQUAINT ACE 
2004 

CLUE 
WEB 

WIKI 
PEDIA 

Original DCA  0.9003 0.8988 0.9334 0.8601 0.8773 0.7634 0.7623 

Ours: EN - CoNLL 0.9195 0.9114 0.9395 0.8363 0.8853 0.7564 0.7383 

Ours: All - CoNLL 0.9141 0.9157 0.9273 0.8000 0.8773 0.7206 0.7164 

Ours: All - Wiki 0.8266 0.8606 0.9288 0.8965 0.8933 0.7515 0.7457 

Ours: All - Both 0.8982 0.8921 0.9396 0.8769 0.8853 0.7539 0.7605 

Table 8 In-KB accuracy for English datasets for original DCA model and  
our embedding vocabulary - train data configurations 

Increasing the entity vocabulary leads to a small drop in performance in the WNED collection 

datasets. Finally, training on Wikipedia leads to a drop in CoNLL performance that can be countered 

by mixing both train datasets to obtain performance similar to the model using English entities only. 

This seems to indicate that having training data from different domains (news and Wikipedia) helps 

the model be more resistant to domain changes. 

Table 4 shows results for the multilingual scenario where our model can surpass the original DCA 

results with English entities. Adding German and Portuguese entities results in metric behavior 

similar to the English-only scenario where there is a slight reduction in scores using only CoNLL 

data and adding Wikipedia data helps to revert that reduction. Comparing the English results in 

sVoxEL with the previous table it is possible to observe a notorious increase in performance for 

sVoxEL. This is because this dataset contains a small set of documents. Moreover, a considerable 

subset of those documents deals with the news related to the European Union leading to recurrent 

entities across documents that inflate scores since they are repeatedly solved. Having common entities 

in the documents means that they will have an English Wikipedia page. The embeddings for these 

entities will thus only be trained on English data, which might be a reason for the marginal increases 

in other languages even for German whose entities we are using. 
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Model sVoxEL-fr sVoxEL-de sVoxEL-it sVoxEL-es sVoxEL-en 

Original DCA  0.9200 0.8434 0.9173 0.8750 0.9327 

Ours: EN - CoNLL 0.9500 0.8737 0.9523 0.9100 0.9625 

Ours: All - CoNLL 0.9300 0.8737 0.9474 0.9050 0.9277 

Ours: All - Wiki 0.9300 0.8789 0.9373 0.9100 0.9476 

Ours: All - Both 0.9300 0.8789 0.9474 0.9100 0.9526 

Table 9 In-KB accuracy in a multilingual scenario for original DCA model and  
our embedding vocabulary - train data configurations 

With regards to future work, we are currently exploring a new approach based on De Cao et al. (2021), 

that solves entity linking through an autoregressive formulation. This new approach directly generates 

the linked entity’s name with a highly parallel formulation that is able to use transformer-based 

contextual embeddings while boasting a considerable training and inference speedup over previous 

methods. Moreover, the original work by De Cao achieved state-of-the-art results in the CoNLL 

dataset. We are currently adapting the English-only original model to work in a multilingual scenario. 

Our initial results in CoNLL reveal a 4-point drop in micro F1 score for the multilingual approach. 

Despite the performance drop, our multilingual model is still competitive with past state-of-the-art 

English-only approaches and can work with a large set of 100 languages. Current efforts are geared 

towards evaluating the model with multilingual datasets. Provided the model works well, we intend 

to understand how to adapt either DCA or this model, depending on which is better, to work with 

user feedback and in stream learning scenarios. 

Contextual entity representations 

In this subsection, we report preliminary results on the quality of the contextual entity representations. 

With this aim, we follow the same procedure as Ganea and Hoffman 2017 by computing entity 

relatedness scores on the dataset from Ceccarelli et al. 2013. We use the same evaluation metrics: 

normalized discounted cumulative gain (NDCG) and mean average precision (MAP). Table 5 shows 

our results both for the initial multilingual scenario with mbpe embeddings and using the contextual 

embeddings of the fine-tuned xml-roberta-base on the multilingual SELMA NER dataset. 
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 NDCG@1 NDCG@5 NDCG@10 MAP 

Yamada (2016) 

English only 

0.59 0.56 0.59 0.52 

Ganea and Hoffman 

English only  

0.632 0.609 0.641 0.578 

Ours  

multilingual mbpe 

0.641 0.604 0.635 0.572 

Ours multilingual 
contextual, mean pool 

0.649 0.603 0.629 0.569 

Table 5 Entity relatedness on the test set of Ceccarelli et al. 2013 

The results above are promising since they are our baseline approach and achieved results on par with 

our previous multilingual mbpe entity embeddings. We will keep experimenting the other described 

approaches to see if we can improve the results. 

4.3. Story Segmentation 

We investigate a speaker embedding extractor model that shows superior performance on speaker 

recognition tasks. ECAPA-TDNN architecture, adopted from Desplanques et al. (2020), presents a 

state-of-the-art model, which combines channel- and context-dependent attention mechanism, 

multilayer feature aggregation, as well as squeeze-excitation and residual blocks together. Owing to 

its carefully designed neural architecture, this model has recently shown impressive performance in 

the speaker tasks. We utilized a pre-trained model developed by NVIDIA6. As opposed to the original 

work which only uses the development part of the VoxCeleb2 dataset (Chung et al. 2018) with 5,994 

speakers as training data, NVIDIA's pre-trained model is trained with VoxCeleb1 (Nagrani et al. 

2017) and VoxCeleb2 data together. It is a known that neural networks can benefit from data 

augmentation which generates extra training samples. Thus, the RIRs2 (reverb) (Ko et al. 2017) and 

 

6 NVIDIA’s pre-trained model: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa_tdnn. 
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MUSAN datasets (babble, noise) (Synder et al. 2015) are then used for data-augmentation purposes. 

In total, the training data contains 7,205 speakers with 1,234,651 utterances. We use the VoxCeleb1 

cleaned test split to evaluate our speaker recognition experiments. 

The performance of our speaker recognition systems is evaluated by the two most common metrics 

known as equal error rate (EER) and decision cost function (DCF). EER is a biometric security 

algorithm used to determine the threshold values for its false acceptance rate and its false rejection 

rate. When these rates are equal, the resulting value is referred to as the EER. This value indicates 

that the proportion of false acceptances equals the proportion of false rejections (i.e., when Type I 

error is equal to Type II error). The lower the equal error rate value, the higher the accuracy of the 

speaker system. Alternatively, the decision cost function takes the prior probabilities of the target 

speaker occurrences, the proportion of target and non-target speakers into consideration. The 

detection cost function is a simultaneous measure of discrimination and calibration. In our 

experiments, we prefer to report the minimum value of the DCF curve that is called minDCF. 

Three types of speaker recognition architectures will serve as baselines to measure the impact of our 

proposed model: i-vector, x-vector, and ResNet-based system, which currently provides state-of-the-

art performance on several recognition tasks such as VoxSRC (Chung et al. 2019). 

Dehak et al. (2011) proposed the i-vector model, which is a combination of speaker space and channel 

space. A new low-dimensional space defined as the total factor space represents each utterance with 

a low-dimensional feature vector termed i-vector. In other words, each utterance is projected onto the 

entire factor space and is characterized by an i-vector. The input features are 20 MFCCs with a frame 

length of 25ms that are mean-normalized over a sliding window of up to 3 seconds. Delta and 

acceleration are appended to create 60-dimensional feature vectors. 

Snyder et al. (2018a) presented an x-vector system that is based on the neural network-based 

embeddings described in Section 3.3 with a greater detail there. The features are 24-dimensional filter 

banks with a frame length of 25ms, mean-normalized over a sliding window of up to 3 seconds.  

Extended TDNN (E-TDNN) x-vector architecture improves the original x-vector system where the 

initial frame layers consist of 1-D dilated convolutional layers (Zeinali et al. 2019). Residual 

connections are also introduced in all frame-level layers, followed by an attentive statistical pooling 
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that calculates the mean and standard deviations of the final frame-level features (Garcia-Romero et 

al. 2020). After the statistical pooling, two fully-connected layers are introduced, with the first one 

acting as a bottleneck layer to generate the low-dimensional speaker characterizing embedding. 

A performance overview of these baseline systems and the proposed ECAPA-TDNN system are 

given in the table below. Speaker embeddings are extracted from the final fully-connected layer for 

all systems. Trial scores are produced using the cosine distance between embeddings. We use 512 

convolutional layers with the input features of 80-dimensional MFCCs from a 25ms window with a 

10ms frameshift. As a final augmentation step, SpecAugment (Park et al. 2019) on the log-mel 

spectrogram is applied. The model randomly masks 0 to 5 frames in the time domain and 0 to 10 

channels in the frequency domain. ECAPA-TDNN architecture significantly outperforms all 

baselines and gives an average relative improvement of 32% in EER and 25% in MinDCF over the 

E-TDNN. 

Model  EER [%] MinDCF 

i-Vector (Dehak et al. 2011) 5.32 0.49 

x-Vector (Snyder et al. 2018a) 3.14 0.33 

E-TDNN (Zeinali et al. 2019) 1.49 0.16 

This Work: ECAPA-TDNN 1.01 0.12 

Table 10 EER and MinDCF performances of all systems on the standard VoxCeleb1 test split 

In the following experiments, we will continue with an ablation study to gain a deeper understanding 

of how each of the components affects the performance, such as SE-block, MFA, or Res2Net-block. 

Apart from that, we will investigate three crucial future directions in the rest of the project: (i) 

extending the ECAPA-TDNN model to speaker diarization problem, (ii) implementing domain 

adaptation scenarios to transfer recognition model from one language to another, (iii) incorporating 

the user feedback mechanism over the speaker adaptation idea such that users can explicitly provide 

new data from an unknown speaker to achieve better recognition performance. 
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4.4. Online News Classification  

We compared the results of our new approaches on the News Classification problem to the model 

previously described in report D5.1 of the SUMMA project, hereafter referred to as “multi-CNN”. 

We report micro-F1 scores of our models, trained on the Lusa Portuguese news dataset with IPTC 

subject labels. We also report zero-shot cross-lingual results on the smaller English and Spanish 

datasets. Table 6 shows the results of our sentence embedding attention-based models. We compare 

the results of using a single query to generate a single representation of the model; Three queries, 

corresponding to the three depths of the label hierarchy, to develop three representations; And having 

each label learn its own query. As a baseline, we also present the results of averaging all sentence 

embeddings in a document and using the resulting vector for classification. 

Model  Portuguese F1 English F1 Spanish F1 

Multi-CNN 64.33% 49.32% 52.61% 

DistilUSE + average 65.08% 54.24% 49.16% 

DistilUSE + global attention 66.77% 53.19% 60.05% 

DistilUSE + hierarchy depth attention 67.40% 52.13% 61.30% 

DistilUSE + label attention 66.48% 54.52% 60.63% 

Table 11 F1 performance of sentence embedding attention-based models on Portuguese,  
English, and Spanish testing datasets (English and Spanish are zero-shot languages) 

Table 7 shows the results of our AttentionXML based models. We compare the results of using a 

traditional AttentionXML with a word embedding layer using the multilingual BPEmb embeddings 

and using a multilingual mBERT model to generate the contextual word embeddings that are fed into 

the biLSTM of AttentionXML. Our current results and incremental improvements of F1 scores over 

previous models show the promise of the current direction of work. As future work we intend on 

leveraging the information in the label descriptions available in the IPTC vocabulary to generate 

better label embeddings. This is similar to work done in the past by Mittal et al. 
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Model  Portuguese F1 English F1 Spanish F1 

Multi-CNN 64.33% 49.32% 52.61% 

AttentionXML + BPEmb 68.63% 33.26% 55.29% 

AttentionXML + mBERT 70.10% 52.88% 64.36% 

Table 12 F1 performance of sentence embedding attention-based models on Portuguese,  
English, and Spanish testing datasets, for models trained on the Lusa dataset (English and Spanish are zero-

shot languages) 

A drawback to be tackled is the limited input size of 512 tokens on the AttentionXML+mBERT 

model. Approaches to this issue include using BERT style models that are pretrained for longer 

inputs, such as the Longformer (Beltagy et al. 2020). Alternatively, we intend on experimenting with 

training AttentionXML’s biLSTM to join the concatenated outputs of consecutive mBERT forward 

passes. 

As expected of models that are fine-tuned on a monolingual Portuguese dataset, the best results are 

obtained on the Portuguese language test sets. This suggests that some multilingual performance of 

the pretrained models is lost in our experimental setup. We have also trained some of the described 

models on the multilingual dataset created from joining the Finnish and Portuguese news datasets 

from STT and Lusa, respectively. It should be noted that these results cannot be fairly compared to 

the ones shown on the previous tables because the label space changed to include labels that were 

added for being present in the Finnish dataset. The results for these models are shown in Table 8, 

along with the scores of the old Multi-CNN model, which has not been retrained on the Finnish 

dataset, and along a hybrid model of AttentionXML with a multilingual Roberta-Large. 
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Model  Portuguese F1 Finnish F1 English F1 Spanish F1 

Multi-CNN* 64.33% 14.93% 49.32% 52.61% 

AttentionXML + BPEmb 67.15% 67.86% 29.04% 43.37% 

AttentionXML + mBERT 67.69% 66.28% 55.44% 64.04% 

AttentionXML + Roberta 70.32% 68.58% 56.26% 62.81% 

Table 13  F1 performance of sentence embedding attention-based models on Portuguese, Finnish, 
English, and Spanish testing datasets, for models trained on the Lusa+STT dataset (*excluding Multi-CNN) 

(English and Spanish are zero-shot languages) 

4.5. Online News Clustering 

We follow previous work on this task and evaluate our system on a news clustering dataset (Rupnik 

et al. (2016)). Besides the three main languages (English, Spanish, and German), this dataset also 

provides a significant number of documents in Chinese and Russian, as well as documents in 

Slovenian, Croatian, French, and Italian.  

Systems 
BCubed Standard 

Clusters 
F1 P R F1 P R 

Miranda et al. (2018) - - - 84.00 83.0 85.00 - 

Linger et al. (2020) 82.06 80.25 83.97 86.49 85.11 87.92 606 

4-F Rank + Accept. 88.02 91.31 84.95 92.34 97.26 87.09 957 

8-F Rank + Accept. 89.24 92.62 86.11 93.76 97.66 90.15 1023 

8-F Rank + Accept. + Merge 90.10 89.70 90.51 97.21 97.01 97.42 812 

Table 14 Cross-lingual clustering performances on the news clustering test dataset  
where P and R represent the precision and recall respectively 

The samples allow us to roughly preview the system’s performance in other languages besides the 

ones it was trained in. The dataset is composed of 34,687 news documents, and it is divided into two 

sets: a training set comprised of 20,813 articles and a test set that contains 13,874 articles. For cross-



 

 

  

D2.4 Intermediate Progress Report on Continuous Massive Stream Learning  48 

  

lingual clustering, as shown in Table 9, our system achieves state-of-the-art performance on BCubed 

F1 (Amigó et al. (2009)) (+8.04) and the standard F1 (+11.33) despite producing a larger number of 

clusters. We also perform an ablation study that shows the relative importance of system components. 

4-F Rank+Accept. refers to the clustering system with a 4-feature ranking and acceptance model. 

Adding the other features, such as 8-F Rank+Accept., improved both standard (+1.42) and BCubed 

F1 (+1.22). Finally, the cluster merge model is added to our system, which results in gains for both 

standard (+3.35) and BCubed F1 (+0.86). 

Languages 
BCubed Standard 

Clusters 
F1 P R F1 P R 

Chinese 96.18 100.00 92.65 99.07 100.00 98.16 28 

Slovenian 76.92 100.00 62.50 79.67 100.00 66.21 12 

Croatian 77.85 100.00 63.73 74.99 100.00 60.00 5 

French 98.50 100.00 97.04 99.69 100.00 99.39 3 

Russian 100.00 100.00 100.00 100.00 100.00 100.00 1 

Italian 98.86 100.00 97.75 98.78 100.00 97.59 3 

Table 15 Clustering performances on other languages where  
P and R represent the precision and recall respectively 

Given the nature of our system, we evaluated it on the remaining languages of the dataset, as shown 

in Table 10. Our ranking, acceptance, and cluster merge models were not trained on any data from 

these languages (except for Chinese), making this a zero-shot clustering scenario. Chinese, French, 

Russian, and Italian document clustering had high F1 scores, with results above 95%, and both 

Slovenian and Croatian had initial clustering scores above 70%.  

Regarding future work, a relevant approach to follow is the implementation of high-performance 

vector search in order to improve clustering speed and scalability, which takes advantage of the 

current fully dense clustering space. Taking the feedback of users into account on the clustering 

process in order to fine-tune the models is also a pertinent direction. Regarding the improvement of 

the current evaluation scores, following work on entity-aware contextual embeddings is also a 
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relevant approach, with the main obstacle being the need of said entity-awareness to cover all of the 

SELMA languages. 

4.6. News Summarization 

Monolingual Text Summarization 

We evaluate our energy-based re-ranking model (EBR) described in Section 3.6 against a baseline 

BART system with the usual beam search decoding algorithm and against other improved 

summarization systems, namely: BRIO (Liu et al. (2022)), which employs a ranking loss as an 

additional term on the training of the abstractive system; CLIFF (Cao & Wang (2021)), which uses 

data augmentation techniques and contrastive learning to enhance the factual consistency of the 

summaries; DAE (Goyal & Durret (2021)), which detects and discards non-factual tokens from the 

training data; FASum (Zhu et al. (2021)), which incorporates knowledge graphs also to enhance 

factual consistency; and SumRerank (Ravaut et al. (2022)), which employs a mixture of experts to 

train a re-ranker on the combination of various metrics. For our model and for SumRerank, we sample 

8 candidate summaries from BART using diverse beam search (Vijayakumar et al. (2016)). The 

models are evaluated on two benchmark datasets for abstractive summarization: CNN/DailyMail 

(Hermann et al. (2015)) and XSum (Narayan et al. (2018)), both containing news articles paired with 

their respective reference summaries. In XSum each summary consists of a single sentence, while in 

CNN/DailyMail it can comprise three sentences or more. Regarding the automatic evaluation metrics, 

apart from the usual ROUGE scores, we also measured the QuestEval (Scialom et al. (2021)) and 

CTC scores (Deng et al. (2021)), which are transformer-based metrics that exhibit a stronger 

correlation with human judgment. The results of the baselines and of our EBR trained with the CTC 

metric are in Table 11. 
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Models 
CNN/DailyMail XSum 

R2 QE Cons Rel R2 QE Cons Rel 

BART 20.75 43.28 95.01 61.75 19.42 28.27 83.18 52.23 

BRIO 24.06 43.49 89.61 60.75 - - - - 

CLIFF 20.88 43.28 94.68 60.38 21.41 29.34 82.57 51.92 

DAE - - - - 14.19 29.20 79.45 51.05 

FASum 17.68 42.87 94.30 57.91 9.97 24.35 75.45 39.42 

SumRerank 21.73 43.61 95.07 62.49 21.40 28.76 83.00 52.75 

EBR [Ours] 20.87 43.79 96.15 63.32 19.72 28.66 86.03 54.74 

Table 16 Results of our model and baselines on each of the automatic evaluation metrics. (R2: ROUGE-2, 
QE: QuestEval, Cons: CTC consistency, Rel: CTC relevance) 

We see that our model outperforms or is competitive with the remaining in all the metrics except 

ROUGE, which is known to correlate poorly with human judgment. Interestingly, despite the fact 

that our model was trained with the CTC scores only, it yields improvements over BART in ROUGE 

and QuestEval metrics as well.    

Even though the results of automatic evaluation are promising, directly optimizing for a metric is 

risky as none of these metrics correlate perfectly with human judgment. For this reason, it is crucial 

to conduct a human evaluation. Specifically, we asked the judges to do pairwise comparisons between 

the summaries generated by three models: BART, CLIFF, which was the strongest published baseline 

at the time we conducted this study, and our EBR trained with the CTC scores. For each source 

document, we presented three pairs of summaries consecutively, which correspond to all the pairwise 

combinations of the summaries generated by the three systems. Then, we asked the judges to rank 

the summaries in each pair according to three criteria: factual consistency, relevance, and fluency. 

For each criterion, the judges had to evaluate whether the first summary was better than, tied with, or 

worse than the second. We randomly sampled 30 source documents from the test set of 

CNN/DailyMail and another 30 from the test set of XSum, so each judge was asked to compare 180 

pairs of summaries. The results are presented in Table 12. The first observation is that our EBR model 
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succeeds at improving the quality of the candidates sampled from BART on the CNN/DailyMail 

dataset in all three criteria. On XSum, the improvements are marginal or even absent, except on the 

fluency dimension. Surprisingly, the comparison of our model with CLIFF contradicts the results of 

the automatic evaluation (Table 11), especially on the XSum dataset. Further analysis conducted in 

our work shows that the primary cause for this contradiction are flaws in the CTC metrics that our 

model was trained to mimic. Specifically, the CTC consistency metric often fails at detecting factual 

inconsistencies, especially when the summaries are highly abstractive as is the case in XSum. 

Despite the improvements obtained by our approach, the lack of more reliable metrics to 

automatically assess summary quality, in particular its factual consistency, spoils its effectiveness in 

more abstractive settings. We reemphasize the difficulty of evaluating summary quality automatically 

and therefore this is a topic that should deserve our attention in future work. Moreover, most of the 

aforementioned transformer-based metrics (e.g. CTC scores and QuestEval) are only available for 

English and therefore the applicability of our method to non-English data is not straightforward. This 

observation also motivates us to pursue methods to address abstractive summarization in the multi-

lingual and cross-lingual settings. 

 

Models 
CNN/DailyMail XSum 

FC R F FC R F 

CLIFF is better .17 .33 .33 .25 .32 .27 

Tie .65 .24 .40 .63 .63 .68 

BART is better .18 .43 .27 .12 .05 .05 

EBR is better .13 .30 .24 .15 .12 .30 

Tie .80 .52 .58 .72 .77 .63 

BART is better .07 .18 .18 .13 .12 .07 

EBR is better .12 .45 .32 .10 .08 .07 

Tie .68 .20 .42 .63 .63 .88 
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CLIFF is better .20 .35 .27 .27 .28 .08 

Agreement .50 .63 .54 .56 .58 .87 

Strong disag. .01 .11 .08 .01 .00 .00 

Table 17 Proportion of times that each model was considered the best for the human judges in each pairwise 
comparison according to three criteria: factual consistency (FC), relevance (R), and fluency (F). Rows 

“Agreement” and “Strong disag.” show, respectively, the proportion of times that the two judges agreed and 
chose opposite options on the pairwise comparisons. 

Cross-lingual Text Summarization 

As mentioned in Section 3.6, we will present a large-scale dataset for cross-lingual summarization in 

12 languages, comprising document-summary examples in all possible 144 language pairs. In 

addition, we will also show the performance of mT5 trained end-to-end on this task using our dataset. 

Some preliminary results are presented in the following. For mT5, two special tokens identifying the 

source and target languages are prefixed to every input sequence at the encoder side. At the decoder 

side, we use language-specific start-of-sequence tokens identifying the target language. The 

performance of this model is compared with a more conventional approach that treats translation and 

summarization as separate steps, using English as the pivot language. Specifically, given a document 

in a source language X and a target language Y, we use a machine translation (MT) model to translate 

the document from X to English, then we obtain a summary in English using a monolingual 

abstractive summarization model, and finally we use MT again to translate the English summary to 

Y. Obviously, when X (resp. Y) is English, the initial (resp. final) translation step is not necessary. In 

our experiments, we used the M2M100 1.2B model (Fan et al. (2021)) for MT and a BART fine-

tuned on the English split of our data for abstractive summarization. 

The ROUGE-2 scores of the end-to-end and cascaded approaches are presented in Tables 13 - 16. 

For conciseness, we only show results for a high-resource language, German (Tables 13 and 14), and 

a low-resource language, Persian (Tables 15 and 16). 
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Models 

de ® * 

ar de el en es fa fr hu it pt ru tr 

Cascaded 1.64 7.26 2.13 5.62 5.11 1.21 6.09 2.17 3.36 3.95 2.79 4.60 

mT5 1.66 10.56 2.04 5.30 5.18 1.88 6.06 2.83 3.55 4.53 3.40 6.85 

Table 18 ROUGE-2 scores of the mT5 model and cascaded approach on cross-lingual summarization from 
German to 12 languages 

Models 

* ® de 

ar de el en es fa fr hu it pt ru tr 

Cascaded 2.51 7.26 2.62 3.43 3.03 2.15 2.88 2.86 2.98 2.97 2.76 2.90 

mT5 3.35 10.56 3.39 3.13 3.63 3.20 3.57 3.46 3.53 3.55 3.33 3.61 

Table 19 ROUGE-2 scores of the mT5 model and cascaded approach on cross-lingual summarization from 
12 languages to German 

 

Models 

fa ® * 

ar de el en es fa fr hu it pt ru tr 

Cascaded 1.54 2.15 3.13 4.31 5.24 4.58 5.41 2.31 3.67 3.76 3.16 3.81 

mT5 1.31 3.20 4.00 4.98 4.71 7.21 4.98 2.55 3.61 4.43 3.87 6.02 

Table 20 ROUGE-2 scores of the mT5 model and cascaded approach on cross-lingual summarization from 
Persian to 12 languages 
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Models 

* ® fa 

ar de el en es fa fr hu it pt ru tr 

Cascaded 1.07 1.21 1.07 1.23 1.42 4.58 1.23 1.34 1.20 1.30 1.23 0.73 

mT5 1.74 1.88 1.00 1.46 2.19 7.21 1.71 1.96 1.97 1.91 1.88 1.26 

Table 21 ROUGE-2 scores of the mT5 model and cascaded approach on cross-lingual summarization from 
12 languages to Persian 

The first observation is that the end-to-end cross-lingual summarization with mT5 surpasses the 

performance of the cascaded approach in most cases, both in the high-resource and low-resource 

scenarios. However, the obtained scores are still very low for a few language pairs, so further 

improvement is required. Moreover, a preliminary human inspection of the generated summaries 

showed that, in many situations, the information presented in the summary changed radically 

depending on the target language. The presence of hallucinations or mistranslated entities were also 

very frequent. These are problems we plan to address in future work. 

5. Conclusions 
In this report, we present the current research and development undertaken in the SELMA work 

package, WP2. In particular, we present our latest advances in named entity recognition, entity 

linking, story segmentation, news summarization, online news classification, and clustering. 

Significant progress was made on the multilingual NER achieving very impressive zero shot results 

and allowing us to use only one model for all tested languages. The work done on multilingual 

summarization is very novel and the contribution of this new dataset will probably be much 

appreciated by the research community. Our improvements on the explainability of the classification 

models will enable the use of these models in other scenarios where human supervision is essential. 

Our work on clustering and summarization was accepted at the SIGIR and EMNLP conferences.  

All the different components being developed in WP2 are the results of our ongoing research effort 

to find the systems that better suit the use-cases of SELMA. These components are being integrated 

on UC1 and UC2 as described in D2.5 and D2.6. 
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